设二部图 [tex=7.5x1.214]owi8k6PAnrn6UxDb9Vv8U9MLbm7Dtz7QCpysp6HC7zw=[/tex] 为 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]-正则图,证明 : [tex=0.786x1.0]AE39d9jt5lmaK/QknwwnQQ==[/tex]中存在完美匹配,其中[tex=2.643x1.143]cfaqtnyliryf7/MzE4dm3ZjOyK4nZ3Dw+cBIlNgbU3o=[/tex]
举一反三
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=
- 利用[tex=2.357x1.0]kfpThotcKMAogYhLU6M1UQ==[/tex]定理证明:若[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是[tex=1.857x1.143]y7i0KNMTbem23CcX+abErQ==[/tex]边连通的[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]正则图,且[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]是偶数,则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]存在完美匹配。
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 二部图[tex=7.5x1.214]owi8k6PAnrn6UxDb9Vv8U9MLbm7Dtz7QCpysp6HC7zw=[/tex]如图 18.27所示. 证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中存在完备匹配,并找出[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中所有不同的 完备匹配.[br][/br][img=310x208]179288576360f4a.png[/img]