[tex=0.643x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的顶点数大于[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]且[tex=1.571x1.0]yFMW7iKbDUvC9rxmlgBbDQ==[/tex]属于[tex=2.143x1.0]cfyQS3UGXbUlYs40wDhTjQ==[/tex]不相邻,且满足[tex=5.857x1.357]7V7Bn55kw9+tF7TAU7CTXi60Ac6nyTVGpTHP6zf/aUQ=[/tex],证明:[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]为Hamilton 图当且仅当[tex=2.071x1.143]Fl+QzjOjSLXVNyOw2d/fHg==[/tex]为Hamilton 图,[tex=0.5x0.786]WKYr2kz69xrVCyPvbyVG1w==[/tex]为[tex=1.571x1.0]yFMW7iKbDUvC9rxmlgBbDQ==[/tex]新边。
举一反三
- 当且仅当[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的一条边[tex=0.5x0.786]WKYr2kz69xrVCyPvbyVG1w==[/tex]不包含在[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的闭迹中时,[tex=0.5x0.786]WKYr2kz69xrVCyPvbyVG1w==[/tex]才是[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的割边。
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 设随机变量(X,Y)的概率分布列为[img=345x154]178ab1c9ce3bc1b.png[/img]求[tex=1.571x1.0]JUrGU6ftUjxQCIr6CyfDwQ==[/tex],[tex=1.357x1.0]yL/7/hhyqgwzAX8jnIq3OQ==[/tex],[tex=4.357x1.357]LN0xwhQHSOeLwBClUlpHQw==[/tex].
- 图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点,[tex=2.357x1.143]dkoxwOpyXKTw0HsOj3nnBg==[/tex]条边,证明[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中至少有一个顶点度数大于等于[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]。
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是带有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点的简单图。证明:[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是树当且仅当[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]没有简单回路并且有[tex=1.929x1.143]odTH0p5clPZMk1jQf4ctjw==[/tex]条边。