设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是带有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点的简单图。证明:[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是树当且仅当[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]没有简单回路并且有[tex=1.929x1.143]odTH0p5clPZMk1jQf4ctjw==[/tex]条边。
举一反三
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是带有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点的简单图。证明:[br][/br][tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是树当且仅当[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是连通的并且有[tex=1.929x1.143]odTH0p5clPZMk1jQf4ctjw==[/tex]条边。
- 证明:简单图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是二分图,当且仅当[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]没有包含奇数条边的回路。
- 图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点,[tex=2.357x1.143]dkoxwOpyXKTw0HsOj3nnBg==[/tex]条边,证明[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中至少有一个顶点度数大于等于[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]。
- 证明:若[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是连通图,则有可能删除顶点使[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]变成不连通的当且仅当[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]不是完全图。
- 有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点的有向图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]最多有条边。