2-9 试求下列卷积。 (a) d( t ) * 2 (b) e( t + 3 ) * e( t - 5 ) (c) te-t×e( t ) * d¢ ( t )
举一反三
- 设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
- 设\(z = {e^{x - 2y}}\),而\(x = \sin t,\;y = {t^3},\)则\( { { dz} \over {dt}} = \)( ) A: \({e^{\sin t - 2{t^3}}}\) B: \({e^{\sin t - 2{t^3}}}\left( {\cos t - 6{t^2}} \right)\) C: \({e^{\sin t - 2{t^3}}}\ {\sin t } \) D: \({e^{\sin t - 2{t^3}}}\,{t^3}\)
- 下列系统不属于线性系统的是()(A)r(t)=2e(t)+3;(B)r(t)=e(2t);(C)r(t)=e(-t);(D)r(t)=te(t) A:
- 已知向量组\(\alpha_{1}=(1,1,2)^T,\alpha_{2}=(3,t,1)^T,\alpha_{3}=(0,2,-t)^T,\)线性相关\(,\)则\(t\)=\(( \quad )\)。 A: 、\(t=5\)或\(t=-2\) B: 、\(t=5\)或\(t=2\) C: 、\(t=-5\)或\(t=2\) D: 、\(t=1\)或\(t=-2\)
- 已知T(1)=9,T(2)=8,T(0)=5,Total=T(1)+T(2)+T(0),则Total=()。 A: 9 B: 22 C: 8 D: 5