若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是次数大于零的多项式且 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 可以整除 [tex=6.357x1.357]pGmCxVYMeXbY0RBdFv1lOoYMiK8I0KiEOR7VpOaifh0=[/tex], 求 证: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的根只能是 0 或 1 的某个方根.
举一反三
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是次数大于令的多项式, 求证: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 等于某个不可约多项式 的幂的充要条件是: 对任意非常数多项式 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex], 或者 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 互素, 或者 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 可以整除 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的某个幂.
- 设非零的实系数多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]满足[tex=5.857x1.571]xuo/caF7g1JxzO9tAsH5V+Z5aGTPk3h4SrnQbNH+GYU=[/tex],求多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]。
- 求多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 使 [tex=10.357x1.357]1L5+0wGJKQDSl7CcBoVRtCBnE+zVLmNIKAtL5r1C3xc=[/tex] 这样的多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是否可能是整系数多项式?
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是实系数多项式,求证:(1) 若 [tex=4.0x1.357]4xX2ZK17ay5biPFwGeUUHA==[/tex], 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 无重根且有奇数对虚根;(2) 若 [tex=4.0x1.357]tiPcAPj/8sVdzkpb54VwWQ==[/tex], 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 无重根且有偶数对虚根.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 二阶可导且 [tex=6.357x1.429]e6+rzDcVVPSEHjxxW4BNBQOHRK8p4QazapXIgf5J8eM=[/tex] 求 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] .