设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是实系数多项式,求证:(1) 若 [tex=4.0x1.357]4xX2ZK17ay5biPFwGeUUHA==[/tex], 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 无重根且有奇数对虚根;(2) 若 [tex=4.0x1.357]tiPcAPj/8sVdzkpb54VwWQ==[/tex], 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 无重根且有偶数对虚根.
举一反三
- 设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是实系数[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次多项式,其中[tex=2.5x1.143]K+Swr2cA+8b62T1YU7nuOw==[/tex]。证明:如果[tex=3.429x1.357]5W4xTQrlz2YsNIZZqereQA==[/tex],那么[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]无重根且有偶数对虚根;如果[tex=3.929x1.357]vxzECGGRprE9ImOPQXowww==[/tex],那么[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]无重根且有奇数对虚根。
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是实系数首一多项式且无实数根, 求证: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 可以表示为两 个实系数多项式的平方和.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是实系数三次多项式, 证明: 当 [tex=3.429x1.357]3LCq1/kx41lm0DJyPv60jQ==[/tex] 时, [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=0.857x1.0]dcHR/AMhWBg4tOPVkI9qFw==[/tex] 中有重根, 并且 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=0.857x1.0]dcHR/AMhWBg4tOPVkI9qFw==[/tex] 中的根都是实数; 当 [tex=3.929x1.357]M3c1JMEQ3Z8PAHWcVJfAxg==[/tex] 时, [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 有三个互不相同的实根; 当 [tex=3.929x1.357]ahk8fXK8wopdzNwKn3PhwQ==[/tex] 时, [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 有一个实根, 一对共斩虚根.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次有理系数多项式, 若 [tex=2.5x1.071]UmcDBu0nDM7wGDdKxgvEEg==[/tex], 求证: [tex=1.429x1.429]CHT4LSgbMdocanZXSUSLsA==[/tex] 必不是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的根.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=4.786x1.357]WafKDm5071vVz9IYJgBhj8LbdrnQF2M50OcMtr5E7Yg=[/tex] 内可导,求证:(1) 若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 为奇函数,则 [tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex] 为偶函数;(2) 若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 为偶函数,则 [tex=2.214x1.429]r3ryU11yfSTbvuAILFSmgH2ollMLH96oAfXGf/TJKyA=[/tex] 为奇函数.