2-3 设有如下函数f( t ),试分别画出它们的波形。 (a) f( t ) = 2e( t -1 ) - 2e( t -2 ) (b) f( t ) = sinpt[e( t ) - e( t -6 )]
举一反三
- 【多选题】若f 1 (t) = ɛ (-t) , f 2 (t) = e t ,则f 1 (t)* f 2 (t) = A. f 1 ꞌ (t)* f 2 (–1) (t) B. f 1 (–1) (t)* f 2 ꞌ (t) C. f 1 (t-3)* f 2 (t+3) D. f 1 (–3) (t)* f 2 ꞌꞌꞌ (t)
- 已知因果函数f (t)的象函数为F (s),则e –3 t f (0.5t–1)的象函数为 A: e–2s F (s+3) B: 2e–2(s+3) F(2s+6) C: 2e–2(s+3)F (s+3) D: 2e–(2s+3)F (2s+3)
- 已知x(t)=[1,0,3]; y(t)=[2,1]; 计算卷积f(t)=x(t)*y(t) A: f(t)=[1,2,3,6] B: f(t)=[2,1,6,3] C: f(t)=[2,0,6] D: f(t)=[3,0,9] E: f(t)=[2,4,1,2]
- 设f(1)=0,t<3,试确定信号f(1-1)+f(2-t)为0的t值 A: t>-2或t>-1 B: t=1或t=2 C: t>-1 D: t>-2
- 若F(ω)=[f(t)],利用Fourier变换的性质求下列函数g(t)的Fourier变换.(1)g(t)=tf(2t);(2)g(t)=(t一2)f(t);(3)g(t)=(t一2)f(一2t);(4)g(t)=t3f(2t);(5)g(t)=tf’(t);(6)g(t)=f(1一t);(7)g(t)=(1一t)f(1一t);(8)g(t)=f(2t一5).