下列MATLAB命令中表示复数1+i的为______
A: 2^(1/2)*exp(pi/4*i)
B: sqrt(2)*exp(pi/4*i)
C: 1+i
D: 1+sqrt(-1)
A: 2^(1/2)*exp(pi/4*i)
B: sqrt(2)*exp(pi/4*i)
C: 1+i
D: 1+sqrt(-1)
举一反三
- $\int_{0}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{4}}{[\cos (2t)\mathbf{i}+\sin (2t)\mathbf{j}+t\sin t\mathbf{k}]}\operatorname{dt}=$( ) A: $(\frac{1}{2},\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ B: $(1,\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ C: $(\frac{1}{2},1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ D: $(1,1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$
- 求定积分[img=165x50]17da65381a63c9b.png[/img]; ( ) A: (exp(6*pi) - 1)/(5*exp(2*pi)) B: (exp(6*pi) - 1)*(5*exp(2*pi)) C: (exp(6*pi) - 1)/(exp(2*pi)) D: (exp(6*pi) - 1)+(5*exp(2*pi))
- 圆周率pi的近似率可用下面的公式求得: pi*pi/6 约等于 1/(1*1) +1/(2*2) +...+1/(n*n) 。 由以上公式可知,若n取值10000,则最后一项的值为1E-4,认为可达到精度要求。 以下程序用来求pi的近似值。(其中函数sqrt(a)用于求a的平方根),空白处填 #include [stdio.h] #include [math.h] int main() { long i; float pi; pi=0.0; for(i=1;i<=10000;i++) pi+= ; pi=sqrt(6.0*pi); printf("pi=%10.6lf\n",pi); } A: 1/i*i B: 1/(i*i) C: 1.0/i*i D: 1.0/(i*i)
- 设马尔可夫链{Xn,n≥0}的状态空间为S={1,2,3…},转移概率为p1,1=1/2,pi,i+1=1/2,pi,1=1/2,i∈S,则其平稳分布为 A: π={πi=1/2,i∈S} B: π={πi=1/2^i,i∈S} C: π={πi=1/2^(i+1),i∈S} D: π={πi=1/2^(i-1),i∈S}
- Solve $\int_{-\frac{1}{2}}^1{1-x^2}dx=$? A: $\frac{\pi}{3}+\frac{\sqrt{3}}{8}$. B: $\frac{\pi}{2}$. C: $\frac{\pi}{6}+\frac{\sqrt{3}}{4}$. D: $\frac{\pi}{4}$.