椭圆$x^2+xy+y^2=3$上的点到坐标原点的距离的最大值为
A: $\sqrt{2}$
B: $2$
C: $\sqrt{6}$
D: $6$
A: $\sqrt{2}$
B: $2$
C: $\sqrt{6}$
D: $6$
举一反三
- 求函数$y = \root 3 \of {x + \sqrt x } $的导数$y' = $( ) A: ${{1 + 2\sqrt x } \over {\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ B: $ {{1 + 2\sqrt x } \over {6\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ C: $ {{1 + 2\sqrt x } \over {6\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ D: $ {{1 + 2\sqrt x } \over {\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$
- \( u = 2{x^2}yz \)在点 \( (1,1,1) \)处最大的方向导数 =( )。 A: \( 24\) B: \( 2\sqrt 6 \) C: \( 2\sqrt 3 \) D: \( \sqrt 6 \)
- \( z = {x^2} +{y^2} \)在点\( (1,2) \)处的最大方向导数=( )。 A: \( \sqrt 5 \) B: \( 2\sqrt 5 \) C: \( 2\sqrt 3 \) D: \( \sqrt 3 \)
- 计算\(\oint_L x ds\),其中\(\)为由直线\(y=x\),及抛物线\(y=x^2\)所围成的区域整个边界。 A: \({1 \over {12}}(5\sqrt 2 + 6\sqrt 5 {\rm{ - }}1)\) B: \({1 \over {12}}(6\sqrt 5 + 5\sqrt 2 {\rm{ - }}1)\) C: \({1 \over {12}}(5\sqrt 5 + 6\sqrt 2 {\rm{ - }}1)\) D: \({1 \over {12}}(5\sqrt 5 + 6\sqrt 2 + 1)\)
- 应力圆的半径是( )。 A: (σx +σy)/2 B: (σx -σy)/2 C: τxy D: sqrt( [(σx -σy)/2]^2 + τxy^2 )