A: \( 24\)
B: \( 2\sqrt 6 \)
C: \( 2\sqrt 3 \)
D: \( \sqrt 6 \)
举一反三
- \( z = x{y^2} \)在点 \( ( - 1,1) \)处最大的方向导数=( )。 A: \(1\) B: \( \sqrt 2 \) C: \( \sqrt 3 \) D: \( \sqrt 5 \)
- 求函数$y = \root 3 \of {x + \sqrt x } $的导数$y' = $( ) A: ${{1 + 2\sqrt x } \over {\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ B: $ {{1 + 2\sqrt x } \over {6\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ C: $ {{1 + 2\sqrt x } \over {6\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ D: $ {{1 + 2\sqrt x } \over {\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$
- \( z = {x^2} +{y^2} \)在点\( (1,2) \)处的最大方向导数=( )。 A: \( \sqrt 5 \) B: \( 2\sqrt 5 \) C: \( 2\sqrt 3 \) D: \( \sqrt 3 \)
- 函数$f(x,y,z)=x{{y}^{2}}{{z}^{3}}$在点$(1,1,1)$处的最大方向导数为 ( ). A: $14$ B: $6$ C: $\sqrt{14}$ D: $\sqrt{6}$
- 函数$f(x,y)=\sqrt{1+{{y}^{2}}}\cos x$在点$(0,1)$处的1次Taylor多项式为 A: $\sqrt{2}-\frac{1}{\sqrt{2}}(y-1)$ B: $\frac{\sqrt{2}}{2}+\frac{1}{\sqrt{2}(}y-1)$ C: $2\sqrt{2}+\frac{1}{\sqrt{2}}(y-1)$ D: $\sqrt{2}+\frac{1}{\sqrt{2}}(y-1)$
内容
- 0
计算\(\oint_L x ds\),其中\(\)为由直线\(y=x\),及抛物线\(y=x^2\)所围成的区域整个边界。 A: \({1 \over {12}}(5\sqrt 2 + 6\sqrt 5 {\rm{ - }}1)\) B: \({1 \over {12}}(6\sqrt 5 + 5\sqrt 2 {\rm{ - }}1)\) C: \({1 \over {12}}(5\sqrt 5 + 6\sqrt 2 {\rm{ - }}1)\) D: \({1 \over {12}}(5\sqrt 5 + 6\sqrt 2 + 1)\)
- 1
函数\(y = \arcsin x\)的导数为( ). A: \( - {1 \over {\sqrt {1 + {x^2}} }}\) B: \({1 \over {\sqrt {1 + {x^2}} }}\) C: \({1 \over {\sqrt {1 - {x^2}} }}\) D: \( - {1 \over {\sqrt {1 - {x^2}} }}\)
- 2
函数\(y = {\left( {\arcsin x} \right)^2}\)的导数为( ). A: \(2\arcsin x{1 \over {\sqrt {1 - {x^2}} }}\) B: \( - 2\arcsin x{1 \over {\sqrt {1 - {x^2}} }}\) C: \(2\arcsin x{1 \over {\sqrt {1 + {x^2}} }}\) D: \( - 2\arcsin x{1 \over {\sqrt {1 + {x^2}} }}\)
- 3
求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
- 4
(4)方向导数$\frac{\partial f(1,1)}{\partial \vec{v}}$的最大值和最小值分别为( ) A: $1\ -1$ B: $2,\ -2$ C: $\sqrt{2}$,$-\sqrt{2}$ D: $2\sqrt{2}$,$-2\sqrt{2}$