以下程序段的运行结果是()。a="abcde"Fori=3To1Step-2x=Left(a,i)y=Right(a,i)z=z&x&yNextiPrintz
A: abde
B: aceda
C: abcd
D: abdeae
A: abde
B: aceda
C: abcd
D: abdeae
举一反三
- 以点\( (2, - 1,2) \) 为球心,3为半径的球面方程为( ) A: \( {\left( {x + 2} \right)^2} + {(y - 1)^2} + {(z + 2)^2} = 9 \) B: \( {\left( {x + 2} \right)^2} + {(y - 1)^2} + {(z + 2)^2} = 3 \) C: \( {\left( {x - 2} \right)^2} + {(y + 1)^2} + {(z - 2)^2} = 9 \) D: \( {\left( {x - 2} \right)^2} + {(y + 1)^2} + {(z - 2)^2} = 3 \)
- 设\(z = z\left( {x,y} \right)\)是由方程\({z^3}{\rm{ + }}3xyz - 3\sin xy = 1\)确定的隐函数,则\( { { \partial z} \over {\partial y}}=\)( ) A: \( { { y\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\) B: \( { { y\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\) C: \( { { x\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\) D: \( { { x\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\)
- 设\(f\left( {x,y,z} \right) = x{y^2} + y{z^2} + z{x^2}\),则\({f_{yz}}\left( {0,-1,0} \right) = \)( ) A: 1 B: 0 C: -1 D: 2
- 当x=1,y=2,z=3;时,执行以下程序段后z=( ) if( x>y) x =y; if(y>z) y=z; else x=y; z=x; A: 4 B: 3 C: 2 D: 1
- 以下程序段的运行结果为()。int x=2,y=-1,z=2; if(x A: 2 B: 0 C: 3 D: 1