• 2022-06-06
    设柱面的准线[tex=0.643x1.0]u7XUci3hWIE/S+TBToDPxA==[/tex]是两个球面[tex=16.214x1.5]ZqZWTnYSAeUMEuhHenqKYdGckR49ur9DAhLru13Zo6ZEfcygY06Aef8TDLxHUHb7DsQxaT2cm5tqrOV3JBioig==[/tex]的交线,母线垂直于准线所在的平面,试求这个柱面的方程.
  • [b]解法一 [/b]设所求柱面为[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex],由题意可知[tex=11.929x3.357]ylZtzo8HXQ8y2xnJoH076sNdIDkBSnMDrsyz43JgpZEhi7hJ5K1b4gflDWWM+ffh+CeC/bmI5PmgtDpFjJoA5/HKK6ogcJngKH9P69v1h7HJYryarSOvt59cYaU2UYIXJVLG28Yy+ZG5/uDDhyp/uQ==[/tex]为[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 的一条准线,将其方程变形为[tex=8.0x3.357]GE56u9QCDTqcLxZ66HADygLHZbIq5rxENbjiljuigwshkka/26brwex/yZRGzSLajM9FsL20vIOAIdNMAiC5tZXAJvXqwbB1BH5xIeoIk6Q=[/tex]同解,于是 [tex=5.214x1.357]CAjyNphBVK8SrAUnGihaiw==[/tex]为的方向,从而[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 上过 上一点[tex=5.786x1.357]jJaNDagHB00aCFtgCc+zxE4pUbY22Ic2WogCwbyBmXd7jrm27efpCEip/r2Fsal8[/tex]的母 线方程[tex=13.929x2.286]k2zZn/5+EZZGta+igg5m8gieM7fjIJZ6UvJWiHY9g3xu0eJB8bng3OuKwsv9zTY3ieHETWumcn2OV1W77XL/77J7k+oq81MTFVWPyqnSi4s=[/tex]且[tex=8.0x3.357]GE56u9QCDTqcLxZ66HADyjJiEdC+WzN+E7rRFVulsHy77B7GKqQJe3ZYd34UWDv62o65yAP06531aDh/F5D5hb2WniqHvH2Rjl1BbPRquqKmxcmNLmPYOi3DCXpLXcEc[/tex]从式[tex=2.571x1.357]P7SOhVm21TvmTXt13w6sfQ==[/tex], 式[tex=2.571x1.357]vAJ9Ymw8P02hLvJKjtF1Uw==[/tex]中消去[tex=3.5x1.0]ZQKQGr7S8GJiAdJeXaZNsYWrjflGnTVojVF45O+VmTk=[/tex]得[tex=4.714x2.357]h6AvZnOvxwjfCANfRuYk6RGg2q6Ea1YEnR+B7Ymc/Ak=[/tex]解法二 由题意可知[tex=22.286x9.786]qeiYnKXLEhyhuGRg8yLtr8CESYqYZARUBKqBcfgd9JdbHmkGic37JtPmOaoB70n5bBTh8ASDwf71ERXlNdvDkHE2oT5ao7IFBatpgKvLbmexhC6R53UtTNq7plSY+H0uV/wfYBHtkzameUk9kgE6vbqMEF7vhFkZ2eHdvvAAauwx8kcqz1Syv4A00/9WJ6hd4GkjBLLyY4O9fBXhNL4l6pJCvrNwo6bkdFA6ctgMOOltsjvDQpDtCfgZgFLRk0HwiGmMMhnG10XZ/MzAbmOzBVKwBNgmWDPWESOA4iEBREfQ7BvYlOdiMt116XrntaqgO2NmW9mDEep+L2e9w9rpVJp+e9Jl+M4Z/UrePTCtTb5Ds+kbC0TPjYZ3juJCLUvbp9JE5mLaoAeJUkcXvUNUMk9z6TzQ/3bjXWWod1eg5wG+JA8s7td7HtsoAEfH6VqkVxYY9raWD1TKVXUNC8dSew==[/tex]于是准线方程为[tex=8.071x5.214]ylZtzo8HXQ8y2xnJoH076sNdIDkBSnMDrsyz43JgpZETV5cBOFV0+UxM7ftj0HYfiFXpek4oj0/GqEDFUWdQHHUGVNfaxc3L3BQkznDvyfwv1AWrxNh05s23mYTOSIxY6LbGxDdKdZaVlJ//gIPYPQ==[/tex]从而 [tex=5.214x1.357]CAjyNphBVK8SrAUnGihaiw==[/tex]为 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的方向. 由定理[tex=1.286x1.0]TMUdvrdwMmljEUpH4Ssg4g==[/tex]知,以[tex=0.643x1.0]u7XUci3hWIE/S+TBToDPxA==[/tex]为准线,母线平行于[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴的柱面的方程为[tex=4.714x2.357]h6AvZnOvxwjfCANfRuYk6RGg2q6Ea1YEnR+B7Ymc/Ak=[/tex]说明 以[tex=7.929x3.357]Vf1BpGuhboJ+vk8Sjaeoq8brFCG4LL8uNV3VFP4xIS/KxOjRN2tPTovJaApfwl32MISFu9WVOVFuZ11cl0z3Ch3N4St7YzIwQHivkbHgXYE=[/tex] 为准线, 母线平行于[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴的柱面[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的方程为[tex=4.929x1.357]7doUCIZ68lqbA/qQ3zy8QQ==[/tex]

    内容

    • 0

      写出柱面参数方程,其母线平行矢量[tex=3.714x1.357]5vSeeaQx81uRzpqyFoK0zA==[/tex],而准线为方程[tex=9.286x1.429]zFxwoj9rxNTT69N3h+a2G+vLIGVEDqlxj9DIHdhNplay48td7XCGUGJ4xiPOJ6e5[/tex]

    • 1

      设柱面的母线平行于直线[tex=4.143x1.286]xYA86rakyZHpnEHrzjd58g==[/tex],其准线是曲线[tex=8.786x3.357]uhip0vTIhR2O8qBwDgBMlTOe4OZnNGcSf6BfXN8Vx1YGWCfJ/vRNESFXPIQhnWZrASrMRAe3vxOFR3SOeEecUrM8jQ2lSCcB4tW0x5j3WgKOk5foeaX12Y1dKGQ9Qv3y[/tex]求柱面的方程,并指出其形状。

    • 2

      已知准线为立方抛物线[tex=4.357x3.357]7EJHVCtO2IWq3KpdB+jQsvgTi6o8l6RMVVkBNaCDPye99W43V4cewvxu1LTBDxb+k+PzrgfsEUAW0QWANv7sVA==[/tex]①求以[tex=3.5x1.357]vwaWSHdmk4fd5/tP7O5RpA==[/tex]为母线方向向量的柱面方程;②求以[tex=3.071x1.357]la0wJMlHnkm5QolDdjyrzg==[/tex]为顶点的锥面方程.

    • 3

      求椭圆抛物面[tex=4.429x1.429]X5e2nqO9pGKjb52EkOmpvw==[/tex]与抛物柱面[tex=3.5x1.357]DQR7wiwxmNH2EtriTrLXew==[/tex]的交线关于[tex=1.857x1.214]kwyetxT2lN8FE3xmNqdyfw==[/tex]平面的投影柱面方程和投影曲线方程.

    • 4

      已知柱面的准线为且(1)母线平行于x轴;(2)母线平行于直线x=y,z=c,试求这些柱面的方程.已知柱面的准线为{x+y+z=0,x^2+y^2+z^2=1},且(1)母线平行于x轴;(2)母线平行于直线x=y,z=c,试求这些柱面的方程.