常微分方程\( y'' + y = 2{x^2} + 1 \)的阶数为( ).
A: 1
B: 2
C: 3
D: 4
A: 1
B: 2
C: 3
D: 4
举一反三
- 常微分方程\( y'' + 4y = {e^x} \)的阶数为( )。 A: 1 B: 2 C: 3 D: 4
- 方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
- 下列方程中表示常微分方程的是( )。 A: \({x^2} + {y^2} = a \) B: \(y'' = {x^2} + {y^2} \) C: \( { { {\partial ^2}u} \over {\partial {x^2}}} + { { {\partial ^2}u} \over {\partial {y^2}}} = 1\) D: \(y = \tan wx \)
- 下列方程中( )是一阶线性微分方程。 A: \( 2{x^2}yy' = {y^2} + 1 \) B: \( xy' + {y \over x} - x = 0 \) C: \( \cos y + x\sin y { { dy} \over {dx}} = 0 \) D: \( y'' + xy' = 4{x^2} + 1 \)
- 已知函数由下列方程确定$x^2 - y^2=1 $,则$\frac{d^2 y}{d^2 x} =$( )。 A: $\frac{1}{y^2}$ B: $-\frac{1}{y^2}$ C: $-\frac{1}{y^3}$ D: $\frac{1}{y^3}$