若[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]同时为代数和单调类或同时为[tex=2.786x1.286]sRHfruru7z74drhyRh4F6w==[/tex]和 [tex=2.786x1.286]/ay3BzB64XLxc8p/EK6zZ6Jl52+d+gpWNdqY6Nb0hC8=[/tex], 则 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]为[tex=3.786x1.286]Cu+g7BtdUis9aBuIwDb4Sx3KqfZH0bmN/5ixmyprjYU=[/tex].
举一反三
- 设[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]为半代数,则[tex=1.286x1.071]XXusocW/0hs7MRoKOJx9gQ==[/tex]为代数.
- 设 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 为一简单闭曲线,[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]与[tex=1.786x1.357]q7S+DkUP+kHN4l0TDsnqnA==[/tex]在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]内部及[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]上解析,并且在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]上有 [tex=4.286x1.357]HmaFCIhDwqteOxrMRU/E3w==[/tex],那么在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]内必有[tex=4.286x1.357]HmaFCIhDwqteOxrMRU/E3w==[/tex].
- 判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 若[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]在周线[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]内部亚纯且连续到[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex],试证:(1)若[tex=1.857x1.071]7rPBI34Q2mpj9E7/vhxpyQ==[/tex]时,[tex=4.143x1.357]+pWeRorbNxTM0GmkXzpPmA==[/tex],则方程[tex=3.071x1.357]LTnccpVHbe073DrIO6gKaA==[/tex]在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]的内部根的个数,等于[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]的内部的极点个数。(2)若[tex=1.857x1.071]rOaeet5J+PwqfV28jYM8mA==[/tex]$ 时,[tex=4.143x1.357]yGYszs3HQdWtSKOZI+V5AQ==[/tex],则方程[tex=3.071x1.357]LTnccpVHbe073DrIO6gKaA==[/tex]在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]的内部根的个数,等于[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]的内部的零点个数。