下列广义积分发散的是( )。
A: \( \int_0^{ + \infty } { { e^{ - x}}dx} \)
B: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \)
C: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \)
D: \( \int_0^1 { { 1 \over {\sqrt {1 - x} }}dx} \)
A: \( \int_0^{ + \infty } { { e^{ - x}}dx} \)
B: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \)
C: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \)
D: \( \int_0^1 { { 1 \over {\sqrt {1 - x} }}dx} \)
举一反三
- 下列积分中()不是广义积分。 A: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \) B: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \) C: \( \int_0^1 { { 1 \over { { x^2}}}dx} \) D: \( \int_0^1 { { 1 \over { { x^2} - 4}}dx} \)
- 下列广义积分中, ()是发散的。 A: \( \int_{ - \infty }^0 { { e^x}dx} \) B: \( \int_0^1 { { 1 \over {\sqrt x }}dx} \) C: \( \int_0^{ + \infty } { { e^{ - 100x}}dx} \) D: \( \int_1^{ + \infty } { { 1 \over {\sqrt x }}dx} \)
- 下列广义积分中()是收敛的。 A: \( \int_0^1 { { 1 \over { { x^2}}}dx} \) B: \( \int_{ - {\pi \over 4}}^ { { \pi \over 4}} { { 1 \over { { {\sin }^2}x}}dx} \) C: \( \int_0^{ + \infty } { { e^x}dx} \) D: \( \int_0^{ + \infty } { { 1 \over {1 + {x^2}}}dx} \)
- 下列广义积分收敛的是( )。 A: \( \int_1^{ + \infty } { { x^{ - 3}}dx} \) B: \( \int_1^{ + \infty } { { 1 \over {\sqrt x }}dx} \) C: \( \int_0^{ + \infty } {\cos xdx} \) D: \( \int_0^2 { { 1 \over { { {(1 - x)}^2}}}dx} \)
- 选项( )表示由\( x = 1 - {y^2},\;x = 0 \)围成的平面图形面积。 A: \( \int_0^1 {\left[ {\sqrt {1 - x} - ( - \sqrt {1 - x} )} \right]dx} \) B: \( \int_0^1 {(1 - {y^2})dy} \) C: \( \int_0^1 {\sqrt {1 - x} dx} \) D: \( \int_0^1 {( - \sqrt {1 - x} )dx} \)