下列广义积分收敛的是( )。
A: \( \int_1^{ + \infty } { { x^{ - 3}}dx} \)
B: \( \int_1^{ + \infty } { { 1 \over {\sqrt x }}dx} \)
C: \( \int_0^{ + \infty } {\cos xdx} \)
D: \( \int_0^2 { { 1 \over { { {(1 - x)}^2}}}dx} \)
A: \( \int_1^{ + \infty } { { x^{ - 3}}dx} \)
B: \( \int_1^{ + \infty } { { 1 \over {\sqrt x }}dx} \)
C: \( \int_0^{ + \infty } {\cos xdx} \)
D: \( \int_0^2 { { 1 \over { { {(1 - x)}^2}}}dx} \)
举一反三
- 下列广义积分中, ()是发散的。 A: \( \int_{ - \infty }^0 { { e^x}dx} \) B: \( \int_0^1 { { 1 \over {\sqrt x }}dx} \) C: \( \int_0^{ + \infty } { { e^{ - 100x}}dx} \) D: \( \int_1^{ + \infty } { { 1 \over {\sqrt x }}dx} \)
- 下面积分收敛的是 A: $\int_0^\infty \frac{x^{4/3}}{1+x^2} dx$ B: $\int_1^\infty \frac{dx}{x \sqrt[3]{1+x^3}}$ C: $\int_1^\infty \frac{1}{x} dx$ D: $\int_1^\infty \frac{\arctan x}{x} dx$
- 下列广义积分发散的是( )。 A: \( \int_0^{ + \infty } { { e^{ - x}}dx} \) B: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \) C: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \) D: \( \int_0^1 { { 1 \over {\sqrt {1 - x} }}dx} \)
- 下列广义积分中()是收敛的。 A: \( \int_0^1 { { 1 \over { { x^2}}}dx} \) B: \( \int_{ - {\pi \over 4}}^ { { \pi \over 4}} { { 1 \over { { {\sin }^2}x}}dx} \) C: \( \int_0^{ + \infty } { { e^x}dx} \) D: \( \int_0^{ + \infty } { { 1 \over {1 + {x^2}}}dx} \)
- 下列四个积分中,()是广义积分。 A: \( \int_0^2 { { 1 \over { { {(3 - x)}^2}}}dx} \) B: \( \int_0^6 { { {(x - 4)}^{ - {2 \over 3}}}dx} \) C: \( \int_0^1 { { 1 \over {1 + {x^2}}}dx} \) D: \( \int_1^2 { { 1 \over { { x^2}}}dx} \)