求证: 矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征多项式和极小多项式相等的充要条件是 [tex=2.571x1.143]2Xvn2Uotrsa8g+x1DyFchA==[/tex] 的行列式因子为 [tex=6.786x1.357]bnGoxSw+d/TbOeCsdZEu3gLkqHQOUbz6OkuTJPvTfI3X+RrsbfkARG2np/C6P50/[/tex]
举一反三
- 设 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是有理数域上的矩阵, 其特征多项式的所有不可约因子为 [tex=6.643x1.429]HPgWpEEEIYLZ89dOctpWisJaQIofCmpE/TMfOCKKZGLBxO4Fl8Ih9KFCn4JndPxW[/tex] 又 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的极小多项式是四次多项式, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 在复数域上相似于对角矩阵.
- 求证: 若 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个互不相同的特征值, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征多项式 和极小多项式相等.
- 矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征多项式和极小多项式重合, 矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 也具有这个性质, 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的特征多项式相同,问 [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 是否必相似? [input=type:blank,size:4][/input]
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=2.286x1.357]Ag+wTR6A0dJofzIiroQ/6w==[/tex] 分别是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征多项式和极小多项式, [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 是一个多项式, 求证: [tex=2.071x1.357]rp59L9PX0S2MMXkUXRuI+w==[/tex] 是可逆矩阵的充要条件是 [tex=6.214x1.357]SCBkc5H4H7gXsFShGuBkXHGQ7amFMmuOXsrvhaPqenQ=[/tex] 或 [tex=6.571x1.357]uV9/iM1kG0lOsQMnXnwhcGBmW9K9yZg2k3NElTekBE0=[/tex].
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是 3 阶矩阵,且[tex=2.643x1.357]h0pLE8vvleI3SS/lZLfCsw==[/tex],则[tex=4.143x1.357]TzVoItsLVWI00YVI4rvLQQ==[/tex]( ). 未知类型:{'options': ['2', '-2', '8', '-8'], 'type': 102}