举一反三
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- [tex=2.214x1.0]Z8GWW72u+MH/mjafnp+83A==[/tex]丙酮酸经过丙酮酸脱氢酶系和柠檬酸循环产生[tex=4.0x1.214]EPDWVFNjIR8daNoozaWRDg==[/tex],生成的[tex=3.214x1.0]1AqDCKqjaAug6buHS5Z0tQ==[/tex]、[tex=3.429x1.214]HYAn2+I9AZQLWcA3ajoPaw==[/tex]和[tex=2.143x1.0]qQANfGnLx7pE5mcaEibuNg==[/tex](或[tex=2.071x1.0]YGdeb/NAM7yg+XY6SY16Fg==[/tex])的摩尔比是( )。 未知类型:{'options': ['3:2:0', '4:2:1', '4:1:1', '3:1:1', '2: 2:2'], 'type': 102}
- 设有[tex=2.5x1.357]APHDgPr14Wyo1u00tudyOedl4yH6qf8COMEqpWn+mK6NGMSeqQlS6+47wZNEFpvr[/tex],其中[tex=5.0x1.357]/gzo+erLvzlxSNx7Eb+PBC4RzChD3MqHZN5qLY+gTN0=[/tex],[tex=0.286x0.786]39oUx5bwfUYEJXZinZ8RwQ==[/tex]是算术乘,下述映射是否为[tex=1.214x1.071]ngL2HcNucqVsTWyzylC/nw==[/tex]到[tex=1.214x1.071]ngL2HcNucqVsTWyzylC/nw==[/tex]的同态?如是,说明其是否为满同态、单同态、同构,并计算[tex=2.5x1.357]3TBnGtzX9woG1FteHGAq6a3CMPh23NY8+3/mR3uY4v4=[/tex]的同态像[tex=2.643x1.357]GEspr6hSY+Wc4fbuD9mGL8Ho95XqXSHdfXX88xgK1cM=[/tex].(1)[tex=4.143x1.5]/C1UNKhjcg4SoGLfWhelmw==[/tex];(2)[tex=4.0x1.357]A30dQa4pIsTqFKetT0Ld7A==[/tex].
内容
- 0
设[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]为环[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]到环[tex=1.0x1.143]vL/JscKF18qJf47ozsjQEQ==[/tex]上的一个映射,对[tex=3.286x1.214]3p9vSbuXy9b35NRjagiE2WHQaM8BVQGNQrcUwhPhw2o=[/tex]满足1)[tex=8.357x1.357]SW9xzMiS3AiisZ62RdoDh+ctXTbsD0OR9h7BQoiFpB0vXQ8Ayud4cPp3ujN/ygjg[/tex],2)[tex=6.786x1.357]lnEclGf+4P4Ds+dwUy+lbCNjUpTJ/dktRrz6wSM5PbIJdkah2nhthnPuxtU6nbuQ[/tex]或[tex=6.786x1.357]lnEclGf+4P4Ds+dwUy+lbLc7M6GQulIbsou6LSG/zxWcPqXchiHgXVRnXlO10XZz[/tex],证明[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]为同态或反同态。
- 1
求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 2
已知[tex=10.786x1.357]oPxEQGciaJq0uWonaJqXssvTKx2aAMqoshLd51U2O4M=[/tex],若[tex=2.0x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]相互独立,则[tex=3.0x1.357]cl60lRnHnAb2Fyha9FYNvw==[/tex] A: 1/2 B: 1/3 C: 2/3 D: 3/4
- 3
>>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']
- 4
对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7; (2) 8; (3)10 ;(4) 14 ; (5) 15 (6) 18 。