如图所示,有一半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的均匀带电圆环,总电荷为[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex],利用例[tex=1.786x1.143]y3zzR25LwhLA8e0QlP5zOw==[/tex]所得结果。若是均匀带电的圆盘(半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex],电荷面密度为[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]) ,你能否利用例[tex=1.786x1.143]PyGTfIzO0glsBb2BFlSVrA==[/tex]的结论提出计算此圆盘轴线上离盘心[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]处的场强的方法?[br][/br][img=318x189]17e4ca0293cf92b.png[/img]
举一反三
- 有一半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的半球面,均匀地带有电荷,电荷面密度为[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex],求球心[tex=0.5x1.0]Sc0he7miKB3YF9rgXf2dDw==[/tex]处的电场强度。
- 真空中一个半径为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的均匀带电圆盘, 电荷面密度为 [tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex] 。求[tex=1.357x1.357]TWUgLpDrEXIKICMuiEQPjw==[/tex]在圆盘的轴线上距盘心 [tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex] 为[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]处的电势;[tex=1.214x1.357]vzdGmXlbw83hTiK2SebvEA==[/tex]根据场强与电势的梯度关系求出该点处的场强。
- 半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的薄圆盘上均匀带电,总电量为[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]。令此盘绕通过盘心且垂直盘面的轴线匀速转动,角速度为[tex=0.643x0.786]w3w3weJ46ITy63MtvkP9fQ==[/tex] ,求轴线上距离盘心[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]处的磁感强度。
- 一半径为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的均匀带电圆盘,面电荷密度为[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]。设无穷远处为零电势参考点, 求圆盘中心点[tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex]处的电势。
- 一个半径为[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 的均匀带电圆盘, 电荷面密度为 [tex=1.643x1.0]6Ec4eEVK2laWD0Jf96lbNQ==[/tex]如图[tex=2.286x1.143]7YPq+GAf71Ex5GIbWdOwFg==[/tex] 所示, 求轴线上任一点的电场强度。[img=230x198]17ceb57e8c88869.png[/img]