Let A be a n×n matrix (n ≥ 3) and A∗ is adjoint of A. Suppose that k [img=14x23]17de933034c9caf.png[/img] 0,±1, then (kA)∗ = ( ).
A: kA∗.
B: kn−1A∗.
C: knA∗.
D: k−1A∗.
A: kA∗.
B: kn−1A∗.
C: knA∗.
D: k−1A∗.
举一反三
- 设A为n阶矩阵,k为常数,则(kA)*等于( ). A: kA* B: knA* C: kn—1A* D: kn(n—1)A*
- 设A是任-n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=______. A: kA* B: kn-1A* C: knA* D: k-1A*
- (1998年)设A是任一n(n≥3)阶方阵,A*是A的伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*= 【 】 A: kA* B: kn-1A* C: knA* D: k-1A*
- 设A为n阶矩阵,k为常数,则(kA)*等于( ). A: kA* B: knA* C: kn-1A* D: kn(n-1)A*
- Let A be a 4×4 matrix, the determinant of A is 1/3, and [img=21x20]1803c4e4937ebc3.png[/img] the adjoint matrix of A, then [img=115x27]1803c4e49b725a2.png[/img]=________. A: 1 B: 3 C: 6 D: 9