• 2022-06-29
    (1998年)设A是任一n(n≥3)阶方阵,A*是A的伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*= 【 】
    A: kA*
    B: kn-1A*
    C: knA*
    D: k-1A*
  • B

    内容

    • 0

      若n(n≥3)阶可逆方阵A的伴随矩阵为A*,常数k≠0,1,-1,则(kA)*=(  )A.kA*B.kn-1A*C.knA*D.k-1A*

    • 1

      设A为n阶方阵,k为常数,|A|和|kA|分别是A和kA的行列式,则有 A: |kA|=k|A| B: |kA|=|k||A| C: |kA|=k|A|n D: |kA|=kn|A

    • 2

      设A为n(n≥2)阶矩阵,A*是A的伴随矩阵,k为常数,则(kA)*=() A: A B: kA C: kA D: kA

    • 3

      Let A be a n×n matrix (n ≥ 3) and A∗ is adjoint of A. Suppose that k [img=14x23]17de933034c9caf.png[/img] 0,±1, then (kA)∗ = ( ). A: kA∗. B: kn−1A∗. C: knA∗. D: k−1A∗.

    • 4

      设A,B为n阶矩阵,下列运算正确的是(). A: A2-B2=(A-B)(A+B)( B: 若A可逆,k≠0,则(kA)-1=k-1A<sup>-1</sup>].