• 2022-06-05
     假设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex] 上连续,在 [tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex] 内二阶可导,过点 [tex=4.286x1.357]3VwOmhm70HZjP0fWVuhSbA==[/tex], 与点 [tex=4.286x1.357]WMFxYm/9ahUrxVY4vZzNfw==[/tex] 的直线与曲线 [tex=3.143x1.357]SvkmdiaSCBne2lfTn9xiFw==[/tex] 相交于点 [tex=4.071x1.357]DNZJXwkt8ldYocT8b0CVgg==[/tex], 其中 [tex=4.143x1.071]RD6igP7U4gFQR5kdr6fDYg==[/tex] 证明: 在 [tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex] 内至少存在一点 [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex],使 [tex=3.857x1.429]79SmwT+8J9VTqKDgDEyFq8fv0bldRlFLTtBp5IqUQww=[/tex]
  • 举一反三