• 2022-06-17
    试 作如题[tex=3.643x1.357]55bzQFeRkkZu93o1gzol8w==[/tex]图所示刚架的[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]图。[img=295x322]179dc992baeb221.png[/img][img=234x243]179dc9954871707.png[/img][br][/br]
  • 解[tex=1.143x1.357]VAHhaW1te0xvoqDVN54/dg==[/tex]基本未知量。本题结构有[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex]个基本未知量,即刚结点[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]的转角[tex=0.5x1.786]9LLEPVwEQgKVfTRJYAdxYg==[/tex]和[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]结点(或者[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]结点)的水平位移[tex=0.857x1.0]TEOW1ZWgcUfvKa3/a5ThAg==[/tex]。[tex=1.286x1.357]BEB68bP4vOVk/XYYizw11w==[/tex]求杆端弯矩和柱顶剪力。查表求得杆[tex=4.071x1.286]wsxARIZp3Mea58QZAQCnjg==[/tex]的固端弯矩为[tex=17.643x6.786]JQqMr/D9LqKb0mJ1SgjQJy+PayuQnZAI7FEvvvNJQibQqDR8rsLfJscOkKawtHZqCL3olPy9hsg9WrULwQaRjvL7Y3yHyMo8Rm0Aa/TSRfZZuJ17mGlP0MuXlONyQHZl9CErcsJdpLiWAWgyT9+cx9zcHI4fMi3Mqs+ur9BcFMlnJK4Zt2giUWwakHl2FJZf5ZpnF88cZL6Pnv9yixIhuwFlvPQpkIimVTWmUT6twsdFWsCY6p3M8hVKekpADKzc/3Szj90KkY38E7bkgHO5WkS7ZLgw6cQcZbg0k+IcGCA=[/tex][tex=2.857x1.5]2tt4VzFlLXhCVOjglqmIQ+zdJ/8LUajrnTIf2Wp0d44=[/tex]各杆端弯矩为[tex=17.643x7.071]I3CYIHYe0FQJDtjCg6bDSHb5W1ZbX8SXMthR+4BK0jZPRxnRA2D5q1QG4Vzysxyku75zz8IVFs51kg+FAgFVymi+2iRNU9pAiAgBkCIQEsgaQHAUl5ffAIHSCQFxzWQxelKhHXn+X9uugWrYzrUy2Wxrwdi2DFGvipOBPoyWS6cwy/qwZ5w+IRMLS0y93kwcnMAwQbNOiwDM152KZEGIbU4Lndzd4y1JbdWsBNxUnzEXwzpoPD2pUuBmIH4fqsyMaRbGw4OnsmDc2VZydVkhcTEh8OQ9BD6Uy8LL0B3O+4y/DsTdX7zVympwCoBLKUayBW8X+qKr0VrAr320s0FimmvU0f72I6+Ihmy5ESKUvbnIHwpjVMU7RvBpDwydD8TM[/tex][tex=15.143x2.429]bThwECYPlK4O6vpjiQiobpeaAHydCWCuUENNgEagsVjsARhW7vjWklcvUNzPI03O1HpfldFr5ufuxUPcDvv9uPbZLL8uA/pYgytxIUnBxww=[/tex]各柱顶剪力为[tex=18.071x4.929]NP8/NSHJME8Dsjmz8xD6MBzkWVg44QUnasUCHW6NXISD3ad5xPRDYN/fAAkb24rxcYf5AO998JwxxbFyApKQZc16tQcXEOU9o28rfHG2Nw01mLZHSAFBYYWtwpZo5wvw2MzyPD3KCihh6NuMtadqhmaohlAXtzqzi7T43nEKqaN6P6dwzi/2Uw5XXfoNRl5hb9Eqm9bCNCo3dsSLBX5i+A==[/tex][tex=1.286x1.357]H6tHfFjOZ3ZWdB4qPQ9Ocg==[/tex]列位移法方程。由刚结点[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]的平衡方程[tex=4.429x2.0]ssTD6EXsze+W2pe+vE6CMDzAmAx9JdzLYuRvktpsLzs=[/tex],以及杆[tex=1.571x1.0]NHNK70/hc7O0FSCXm+3W2g==[/tex]分离体(题[tex=3.786x1.357]FDaw+ko3rL0ruBBo6XCz4Q==[/tex]图)的平衡方程[tex=4.0x2.0]aBqcrAMCKN9ADcsPKDydsA==[/tex],可以得到如下位移法方程组:[tex=8.357x2.929]7EJHVCtO2IWq3KpdB+jQspgyWPWlQ94qNI/1w7gX3U3iV/HNR/guZFdXklU8opVnrjYGuTZUm5nvcOJFYjqa2tZBX/8nt3wRV+uUyTbLcM63KhHHJ10GNQ9ds1AX7Kjb[/tex]即[tex=9.929x4.5]7EJHVCtO2IWq3KpdB+jQsi+uUTl5XRXCiNkkg1uqQWM7dRtUEhgXyZm8m7w3+KkG3NTrenh7QJ/joHkN3LKISieqSYBI7oK5orBlCl38NqNp0Lyg4r/HPKXa6gx9Db8M/uNKsdH4zkH5itMbmY/9bSwe53JpKznZfuaTwrS5rcA=[/tex][tex=1.286x1.357]dF+j2ufB5JBOJwdIPfmkfg==[/tex]求基本未知量。[tex=8.929x1.786]e5looyJyuQYxVhDINKITM43HICnbKGxasn5X2fVME/u0D6STVoqKCXbGtYTB66/g[/tex][tex=1.286x1.357]VHgv8yVrrSZwLqu1l6FPnQ==[/tex]求杆端弯矩。.将求得的基本未知量代人第[tex=1.286x1.357]BEB68bP4vOVk/XYYizw11w==[/tex]步各杆端弯矩表达式,得[tex=17.214x2.571]vXsLnsYsw77chYLEFsdmaxJ60nV0A6X3f9D+3UcdMAYWrKcYGiS4LgcVFFDnVt7P5NgwtO1sZkhvZRjIjK7l32QNFk+K0u+z9Mm0wQc/m3TUh2c3bz2fUOOy3N73Mx77JXLv5+ii/hTbjKb32+qQlFWkdffeuG9ISddzsavjz0M=[/tex][tex=1.286x1.357]gfNg2L7OjFhF/G4XiUhPGA==[/tex]作弯矩图(题[tex=3.5x1.357]kYC4+UehJ6QINUP22rLRSA==[/tex]图)。

    内容

    • 0

      试作题[tex=3.143x1.357]j4pQ4G61sCDeAf+euPWMXA==[/tex]图所示刚架的[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]图。设[tex=2.0x1.0]hYBAALM+V4PV1D5W5pIDqA==[/tex]常数。[img=441x400]179df25d3eab6aa.png[/img][img=389x232]179df260d0c0b2c.png[/img]

    • 1

      试利用对称,作如题[tex=3.929x1.286]ts3Fr9m2OH9Qkzo+GqfwNQ==[/tex]图所示刚架的M图[img=437x384]179dcad47d28e89.png[/img]

    • 2

      试作题[tex=3.143x1.357]oJv5mKccXwDha0SsJPr3Tg==[/tex]图所示刚架的[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]图(图中[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]为相对值).[img=494x395]179df1b3b3e8f5e.png[/img]

    • 3

      用力矩分配法计算图[tex=1.0x1.0]GqOMsRKoSA9JSFw5lv/vpw==[/tex]所示刚架,并作[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]图。已知[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]为常数。[img=165x215]179cc9458da47bc.png[/img]

    • 4

      试作如题[tex=3.643x1.357]algFLlhnlrbJuPGoermRdg==[/tex]图所示刚架的内力图。[img=329x274]179dca2e3029a35.png[/img][img=286x268]179dca45d66c184.png[/img][img=231x367]179dcacd1758967.png[/img]