无向图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 如图 14.11 所示.(1) 求 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的全部点割集和边割集,并指出其中的割点和桥(割边).(2) 求 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的点连通度 [tex=2.143x1.357]uxD1UPZJzwR5dyB53LAngg==[/tex] 和边连通度 [tex=2.214x1.429]tBQwnmV6DKXWSWeLfYxUSXY1Kh8jI/ka61DFKw8ydmA=[/tex].[img=257x170]17920459ee08cc6.png[/img]
举一反三
- 在图 16.8 所示的无向图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中,实线边的导出子图为 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的生成树 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex].(1) 求 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 对应 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 的基本回路与基本回路系统.(2) 求 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 对应[tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 的基本割集与基本割集系统.[img=255x246]17921866e94484e.png[/img]
- 无向图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 如图 14.12 所示,先将该图顶点和边标定.然后求图中的全部割点和桥,以及该 图的点连通度和边连通度.[br][/br][img=324x187]1792048d23a37a1.png[/img]
- 设 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 为无向连通图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的一个边割集,证明 [tex=2.786x1.143]jMAYbh8you1a6SvAPIb1IA==[/tex] 不含 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的生成树.
- 设[tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex]和[tex=1.071x1.143]/kl5SQf6O9fsMGHhcDhR+g==[/tex]分别为无向连通图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的点割集和边割集。[tex=1.857x1.143]OkM2URLKcUuB+lJJBopihg==[/tex]的连通分支个数一定为几?[tex=2.643x1.286]jhfTeztVboi83zj5AJ3iVQ==[/tex]的连通分支数也是定数吗?
- 图 7 中所示的无向图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中.实线边所表示的子图为 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的一棵生成树 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex].[br][/br][img=302x171]1793b6fae3bc619.png[/img][br][/br]求 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]对应 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 的所有基本割集.