计算函数的导数:[tex=9.714x1.357]Aj74n/kyOyAL6K1+2llTWiUG6bJbUa3z8r1WAWPUyIg=[/tex]
举一反三
- 求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
- 函数$f(x) =x^{1/2}-x^{2/3}$的单调递减区间为 A: $[0,\frac{3^6}{4^6}]$ B: $[\frac{3^6}{4^6},\infty]$ C: $\mathbb{R}$ D: $\mathbb{R}^+$
- 已知 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在( -1,1 )有定义,计算下列各题.(1) 函数 [tex=7.143x1.571]RrFTwWWGQlaPrArfFmdOo7PVoagYE4cKSLcoWBJ3FLk=[/tex] 的定义域为[input=type:blank,size:6][/input].(2) 函数 [tex=5.857x1.357]V2FtBWceXiDWlcnbHr30OTbUMQDvuKh/wSR919vF/tE=[/tex]的定义域为[input=type:blank,size:6][/input].(3) 函数 [tex=3.857x2.929]m63oC2he6k3BsYNrQD8rpd5+LitMEf3ra9LbepZAxco=[/tex] 的定义域为[input=type:blank,size:6][/input].
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 【单选题】rev(c(1,3,2,6,7,8,8,1,1,0))的运行结果 ? A. [1] 0 1 1 1 2 3 6 7 8 8 B. [1] 1 3 2 6 7 8 8 1 1 0 C. [1] 0 1 1 8 8 7 6 2 3 1 D. [1] 8 8 7 6 3 2 1 1 1 0