已知\( y = \ln \sin x \)在\( \left[ { { \pi \over 6}, { { 5\pi } \over 6}} \right] \)上满足罗尔定理,则\( \xi \)=( )
A: 0
B: 1
C: \( { { \pi \over 2}} \)
D: \( \pi \)
A: 0
B: 1
C: \( { { \pi \over 2}} \)
D: \( \pi \)
举一反三
- 函数\( y = 3\sin \left( {\pi x + {\pi \over 6}} \right) \) 的周期为( ). A: 2 B: \( \pi \) C: 1 D: \( 2\pi \)
- \( y = {1 \over x},y = 0,x = 1,x = 2 \)所围平面图形绕\( x \)轴旋转所得旋转体体积\( V \)=( )。 A: \( \pi \) B: \( {\pi \over 2} \) C: \( {\pi \over 3} \) D: \( {\pi \over 6} \)
- \( y = {x^2},y = 0,\;x = 1 \)所围平面图形绕\( y \)轴旋转所得旋转体体积\( V \)=( )。 A: \( {\pi \over 2} \) B: \( {\pi \over 3} \) C: \( {\pi \over 5} \) D: \( \pi \)
- \( y = {x^2},y = 0,\;x = 1 \)所围平面图形绕\( x \)轴旋转所得旋转体体积\( V \)为( )。 A: \( \pi \) B: \( {\pi \over 3} \) C: \( {\pi \over 2} \) D: \( {\pi \over 5} \)
- $\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$