\( y = {1 \over x},y = 0,x = 1,x = 2 \)所围平面图形绕\( x \)轴旋转所得旋转体体积\( V \)=( )。
A: \( \pi \)
B: \( {\pi \over 2} \)
C: \( {\pi \over 3} \)
D: \( {\pi \over 6} \)
A: \( \pi \)
B: \( {\pi \over 2} \)
C: \( {\pi \over 3} \)
D: \( {\pi \over 6} \)
举一反三
- \( y = {x^2},y = 0,\;x = 1 \)所围平面图形绕\( y \)轴旋转所得旋转体体积\( V \)=( )。 A: \( {\pi \over 2} \) B: \( {\pi \over 3} \) C: \( {\pi \over 5} \) D: \( \pi \)
- \( y = {x^2},y = 0,\;x = 1 \)所围平面图形绕\( x \)轴旋转所得旋转体体积\( V \)为( )。 A: \( \pi \) B: \( {\pi \over 3} \) C: \( {\pi \over 2} \) D: \( {\pi \over 5} \)
- 球面 \(x^2 + {y^2} + {z^2} = {a^2}\)含在圆柱面\({x^2} + {y^2} = ax\) 内部的那部分面积为 ( ) A: \(4{a^2}({\pi \over 2} - 1)\) B: \(4{a^2}({\pi \over 3} - 1)\) C: \(4{a^2}({\pi \over 2} + 1)\) D: \(4{a^2}({\pi \over 3} + 1)\)
- 已知\( y = \ln \sin x \)在\( \left[ { { \pi \over 6}, { { 5\pi } \over 6}} \right] \)上满足罗尔定理,则\( \xi \)=( ) A: 0 B: 1 C: \( { { \pi \over 2}} \) D: \( \pi \)
- 函数\( y = 3\sin \left( {\pi x + {\pi \over 6}} \right) \) 的周期为( ). A: 2 B: \( \pi \) C: 1 D: \( 2\pi \)