一质点沿直线运动, 其运动学方程为 [tex=6.571x1.5]L8q/HdFgTK1qjJ7HV3c+EWnPAyFp8w7GXZTHMGGCP0M=[/tex]. 求: (1) 在 [tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex] 由 0 至 [tex=1.0x1.0]KPsXl6uRbeeg5mTuJVjjNw==[/tex] 的时间间隔内, 质点的位移大小;(2)在 [tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex] 由 0 到 [tex=1.0x1.0]KPsXl6uRbeeg5mTuJVjjNw==[/tex] 的时间间隔内质点走过的路程.
举一反三
- 一质点沿直线运动,其运动学方程为 [tex=3.786x1.357]OugRHHAPMMMXxRHYMVv7Eg==[/tex] [tex=3.857x1.286]g2Kq3kWXZPUfKwy8W55FYDMDO5FhbbE7RcPU1ip9CLg=[/tex],则在 [tex=0.429x0.929]SHDYlnTnnzxVv4clzlq6TQ==[/tex] 由 0 至 [tex=1.0x1.0]KPsXl6uRbeeg5mTuJVjjNw==[/tex] 的时间间隔内,质点的位移大小为[input=type:blank,size:4][/input]。在 [tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex] 由 0 到 [tex=1.0x1.0]KPsXl6uRbeeg5mTuJVjjNw==[/tex] 的时间间隔内,质点走过的路程为[input=type:blank,size:4][/input]。
- 一 质点沿直线运动,其运动方程为[tex=7.214x1.5]f3U/AUzXAuXOOGBwlv9dAVXmKUIsH5YWOj0XRFGw5Ww=[/tex],在[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]从0秒到3秒的时间间隔内,则质点走过的路程为多少?
- 质点作直线运动,其运动方程为[tex=4.786x1.357]n4GoHtnzQlt6jE22ZjREDs9CthN3jdHdNnW6+Bgk6Xo=[/tex] (式中[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]以m计, [tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex]以s计),求质点速度为零时的位置
- 质点沿直线运动, 在时间 [tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex] 后它离该直线上某定点 0 的距离 [tex=0.5x0.786]BgHR5DBWke5rTEC5XEckiQ==[/tex]满足关系式: [tex=8.286x1.5]Z1PDnBtTMOqkM7jc9Z0kEG28xQVT2eQswavDH+QjgWA=[/tex]和 [tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex] 的单位分别是米和秒。求当当质点的速度为 [tex=3.286x1.214]Leo1FMbI+qhZeqa4HO/C7A==[/tex]时它的加速度。
- 质点沿直线运动, 在时间 [tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex] 后它离该直线上某定点 0 的距离 [tex=0.5x0.786]BgHR5DBWke5rTEC5XEckiQ==[/tex]满足关系式: [tex=8.286x1.5]Z1PDnBtTMOqkM7jc9Z0kEG28xQVT2eQswavDH+QjgWA=[/tex]和 [tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex] 的单位分别是米和秒。求当质点的速度为零时它离开 [tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex]点的距离。