设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为对称矩阵,且[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是可逆矩阵,试证:[tex=1.714x1.286]TO1yVSeu6VTkH5eqe0g3AQ==[/tex]也是对称矩阵.
举一反三
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵,且[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为对称矩阵,证明[tex=3.0x1.286]+Kuu2eFUus2l0EouIu5RjNd8NcgWY09erbUFzkPnuyk=[/tex]也是对称矩阵。
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶可逆矩阵,且[tex=3.429x1.286]oa61inl1+LWYn4jx2H4IEA==[/tex],证明[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]合同于[tex=1.714x1.286]TO1yVSeu6VTkH5eqe0g3AQ==[/tex].
- 假设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶反对称矩阵,试证:[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的阶数[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]为奇数时,[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是不可逆矩阵.
- 证明:若[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是正定矩阵,则[tex=1.714x1.286]TO1yVSeu6VTkH5eqe0g3AQ==[/tex]也是正定矩阵.
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,证明[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]仍为正定矩阵.