下列函数在给定区间上满足罗尔定理条件的是( ).
A: $f(x)=\dfrac 1{x},\; [-2,0]$
B: $f(x)=(x-4)^2,\;[-2,4]$
C: $f(x)=\sin x,\; [-\dfrac{3\pi}{2},\dfrac{\pi}{2}]$
D: $f(x)=|x|,\; [-1,1]$
A: $f(x)=\dfrac 1{x},\; [-2,0]$
B: $f(x)=(x-4)^2,\;[-2,4]$
C: $f(x)=\sin x,\; [-\dfrac{3\pi}{2},\dfrac{\pi}{2}]$
D: $f(x)=|x|,\; [-1,1]$
举一反三
- (接上题)(2)设经分界面反射的波的振幅和入射波的振幅相等,则反射波的波函数是 A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$ B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$ C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$ D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$
- (2)设经分界面反射的波的振幅和入射波的振幅相等,则反射波的波函数是 A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$ B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$ C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$ D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$
- 如下函数f(x)=|x|都满足条件f(-1)=1=f(1),其中哪个函数在区间(-1,1)内不存在c使f’(c)=0,因而不成立罗尔定理 A: x^2 B: |x| C: |x^3| D: x^3-x+1
- 在区间[-1,1]上满足罗尔定理条件的函数是( )。 A: f(x)=1/x B: f(x)=|x| C: f(x)=1-x<sup>2</sup> D: f(x)=x<sup>2</sup>-2x-1
- 设$\int_0^\pi {[f(x) + f''(x)]\sin xdx = 5} $,$f(\pi ) = 2$,求$f(0)$=( ) A: 1 B: 2 C: 3 D: 4