函数y=cos(1+x2)的导数是( )
A: 2xsin(1+x2)
B: -sin(1+x2)
C: -2xsin(1+x2)
D: 2cos(1+x2)
A: 2xsin(1+x2)
B: -sin(1+x2)
C: -2xsin(1+x2)
D: 2cos(1+x2)
举一反三
- 求函数[img=107x38]17da6537b12a2e0.png[/img]的导数; ( ) A: 2*x*sin(1/x) - sin(1/x) B: 2xsin(1/x) - cos(1/x) C: 2*x*sin(1/x) - cos(1/x) D: 2*x*cos(1/x) - cos(1/x)
- 函数\(y = \sin {1 \over x}\)的导数为( ). A: \({1 \over { { x^2}}}\sin {1 \over x}\) B: \( - {1 \over { { x^2}}}\sin {1 \over x}\) C: \( - {1 \over { { x^2}}}\cos {1 \over x}\) D: \({1 \over { { x^2}}}\cos {1 \over x}\)
- 17e0b849d3a4a3b.jpg,计算[img=19x34]17e0ab14a855463.jpg[/img]的实验命令为( ). A: syms x; f=diff((1+sin(x)^2)/cos(x),1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2 B: f=diff((1+sinx^2)/cosx,1)f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;f=diff((1+sinx^2)/cosx,1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2
- 设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z_{xx}=}\) A: \(2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) B: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} - 2{x^2}\cos {x^2}} \right]\) C: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) D: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\cos {x^2} + 2{x^2}\sin {x^2}} \right]\)
- 求函数[img=192x40]17da653862ff7b6.png[/img]的导数; ( ) A: cos(x)/sin(x) - cot(x)*(cot(x)^2 + 1) B: cos(x)/sin(x) C: cot(x)*(cot(x)^2 + 1) D: cos(x)/sin(x) - cot(x)*(cot(x)^2 + 1)+cot(x)