对于矩阵\[ A = \left[ {\begin{array}{*20{c}} 1&2\\ 0&1 \end{array}} \right] 与矩阵 B = \left[ {\begin{array}{*20{c}} 1&2\\ 2&1 \end{array}} \right], \]则` A `与` B `( )
举一反三
- 设`\A`是3阶矩阵,将`\A`的第1列与第2列交换得到`\B`,再把`\B`的第2列加到第1列得`\C`,则满足`\AP=C`的可逆矩阵`\P` ( ) A: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&{\rm{1}}&{\rm{1}}\\0&0&1\end{array}} \right]\] B: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&0\\{\rm{1}}&0&1\end{array}} \right]\] C: \[\left[ {\begin{array}{*{20}{c}}1&{\rm{0}}&0\\1&{\rm{1}}&0\\0&0&1\end{array}} \right]\] D: \[\left[ {\begin{array}{*{20}{c}}1&1&0\\1&0&0\\0&0&1\end{array}} \right]\]
- \[A = \left[ {\begin{array}{*{20}{c}} 2&2&3\\ 2&3&1\\ 3&4&4 \end{array}} \right]\],且`\BA = A + B`,则矩阵`\B=` ( ) </p></p>
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 矩阵\[\left[ {\begin{array}{*{20}{c}}{\rm{0}}&{\rm{0}}&{\rm{5}}&{\rm{2}}\\{\rm{0}}&{\rm{0}}&{\rm{2}}&{\rm{1}}\\{\rm{4}}&{\rm{2}}&{\rm{0}}&{\rm{0}}\\{\rm{1}}&{\rm{1}}&{\rm{0}}&{\rm{0}}\end{array}} \right]\]的逆矩阵为 ()
- 设多项式[f(x) = left| {egin{array}{*{20}{c}} x&2&3&4\ x&x&x&3\ 1&0&2&x\ x&1&3&x end{array}} ight|],则多项式的次数为( ) </p></p>