举一反三
- 两端简支的等截面梁,受均布荷载[tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex] 作用,试求挠度[tex=0.5x0.786]pmD1JbahT9zMRAbBNi045A==[/tex].
- 设随机变量(X,Y)的概率分布列为[img=345x154]178ab1c9ce3bc1b.png[/img]求[tex=1.571x1.0]JUrGU6ftUjxQCIr6CyfDwQ==[/tex],[tex=1.357x1.0]yL/7/hhyqgwzAX8jnIq3OQ==[/tex],[tex=4.357x1.357]LN0xwhQHSOeLwBClUlpHQw==[/tex].
- [img=609x539]179a25803457fda.png[/img]题图所示简支梁,由[tex=2.357x1.0]DMIE0S+uoLbCn3X5vcDotg==[/tex]工字钢制成,在集度为 [tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex]的均布载荷作用下,测得横截面[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]底边的纵向正应变[tex=6.0x1.429]AAqhA+Z9k7EmrTmboXuHzwxZj3CZV546L2guxPJgFDunp1mV9r1DE0QGVjDLrthx[/tex]试计算梁内的最大弯曲正应力,已知钢的弹性模量[tex=8.286x1.214]Qwb6ZT/Fo4maBo5rOEd2cEbCGpZmLIzaEVfTaleRKzc=[/tex]
- 由非空集合X的所有子集构成的集合称为X的幂集,记作[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(1)设X={a,b,c},求[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(2)设X是由n个元素组成的有限集,证明[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex]中含有[tex=1.0x1.0]j//x0/Z+ltpf5R8ThFOpMA==[/tex]个元素.
- 设[tex=5.929x1.071]gAFI4ZzNAmjFfJAphmTsRQ==[/tex],若[tex=7.786x1.357]09fTpcwFMVcu1qrv9hyVbjaVP6Nu0Q7b0o9JCaEhfzk=[/tex],[tex=7.786x1.357]17Fg+KbtgLZdNaerla1J+g==[/tex],[tex=7.714x1.357]GzWWzGNDry0+/hdju2Gv5Q==[/tex],那么[tex=0.571x0.786]/uIIzJZ/1DPgc5sOsRpAXQ==[/tex],[tex=0.571x1.0]Tr41q2//n6lfFMLRmh8s0w==[/tex],[tex=0.5x0.786]rGd4FFr4Zsu+cuz6gxITMA==[/tex]的大小关系为 A: x<y<Z B: y<z<x C: z<x<y D: z<y<x E: 不能确定
内容
- 0
[tex=1.429x1.0]UOnodIarBjgrPrxpcDgC3g==[/tex]号工字钢的简支梁,长[tex=3.0x1.0]5xlZiO8KSzqYAul3KJdKFw==[/tex],受布满全梁的均布载荷作用,已知材料的弹性模量[tex=5.0x1.0]jwJF5rO6GxIQ+V/ix4iacg==[/tex]。若梁的最大挠度不得超过[tex=1.786x2.429]0QnNcUMgPZ2WeQjv0yd/pA==[/tex],求最大的均布载荷集度[tex=0.5x1.0]O7oCSJ9lkssShf7eQ8zpFA==[/tex]。
- 1
对于以下两种情形:(1)x为自变量,(2)x为中间变量,求函数[tex=2.214x1.214]sy9gaFRMGlrH59gm9bWSDg==[/tex]的[tex=1.5x1.429]5W5tOYbJ+LlsRP2dMsi4byxwtjvvL/3u7NEzPV5PWp0=[/tex]
- 2
矩形截面简支梁受力如图所示。设为细长梁,已知跨度[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex],试求距离[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]端为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]的[tex=1.714x1.143]EiIjhHlfEDNYYcQcEH+M0w==[/tex]截面上的最大正应力,并画出该截面上的正应力分布图,当1) 该梁为同一材料制成的单梁,横截面尺寸如图(a)所示。2) 该梁为两种材料组成的叠梁,1、2二梁可视为光滑接触,横截面尺寸如图(b)所示。设两种材料的弹性模量上梁为[tex=1.143x1.214]++5qO/sFVPTAa9giTTdTBw==[/tex],下梁为[tex=1.143x1.214]Sp0loCFWg+F18sKdjair0g==[/tex]。并讨论上、下梁材料相同(即[tex=1.929x1.214]I+r5uIL8rH98zXkL6xO7BA==[/tex][tex=1.143x1.214]Sp0loCFWg+F18sKdjair0g==[/tex])和上梁为钢、下梁为铝合金(即[tex=3.5x1.214]h3K/h7+uxNKjfTk6MzNSCw==[/tex])时的情况。3) 将钢与铝梁固结为一个整体梁的情况。[img=1090x559]179bc320bca3ed1.png[/img][img=748x330]179bc324e2d5ac9.png[/img]
- 3
图(a) 所示起重机在连续梁上,已知[tex=4.143x1.214]iI2wIEmq+gu2oraEYzpFsA==[/tex],[tex=4.143x1.214]x/NOrlUEXGXZLYNQQp6TPA==[/tex],不计梁质量,求支座 [tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]、[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]和[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]的反力。[img=378x282]179b1d368b0b737.png[/img]
- 4
矩形截面简支梁受力如图所示。设为细长梁,已知跨度[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex],试求距离[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]端为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]的[tex=1.714x1.143]EiIjhHlfEDNYYcQcEH+M0w==[/tex]截面上的最大正应力,并画出该截面上的正应力分布图,当1) 该梁为两种材料组成的叠梁,1、2二梁可视为光滑接触,横截面尺寸如图(b)所示。设两种材料的弹性模量上梁为[tex=1.143x1.214]++5qO/sFVPTAa9giTTdTBw==[/tex],下梁为[tex=1.143x1.214]Sp0loCFWg+F18sKdjair0g==[/tex]。并讨论上、下梁材料相同(即[tex=1.929x1.214]I+r5uIL8rH98zXkL6xO7BA==[/tex][tex=1.143x1.214]Sp0loCFWg+F18sKdjair0g==[/tex])和上梁为钢、下梁为铝合金(即[tex=3.5x1.214]h3K/h7+uxNKjfTk6MzNSCw==[/tex])时的情况。2) 将钢与铝梁固结为一个整体梁的情况。对这两情况求跨中的挠度[tex=1.286x1.0]pm3i3HFqcxalZGDgWdPG0Q==[/tex]。[br][/br][img=824x786]179bd98d7cece97.png[/img]