设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的联合密度函数为[tex=13.786x2.929]dP4cQckxhVALWt3v5f2JJrF8SYRZv7N2fj9wxKhrz37S8HxxuieBWuCuCQEnPABhX52XBTz0XGIyBOBLo+TGW/x6Ju0jCGD3f/mPV1XWVhc=[/tex]试求以下随机变量的密度函数 [tex=3.714x1.143]RI33/eYAoucsC9kYryCgNg==[/tex].
举一反三
- 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的联合密度函数为[tex=13.786x2.929]dP4cQckxhVALWt3v5f2JJrF8SYRZv7N2fj9wxKhrz37S8HxxuieBWuCuCQEnPABhX52XBTz0XGIyBOBLo+TGW/x6Ju0jCGD3f/mPV1XWVhc=[/tex]试求以下随机变量的密度函数 [tex=5.429x1.357]Z5yteIkeqEnrgoboyIzhuA==[/tex]
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 在区间 [tex=2.286x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex] 上服从均匀分布,在 [tex=7.214x1.357]V+xkADBZ+6KY2QE3eRSKFA==[/tex] 的条件下,随机变量 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在区间 [tex=2.357x1.357]MXPQWNi+zHHCEzuZBSyPtw==[/tex] 上服从均匀分布, 求:(1)随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的联合密度函数;(2)[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的边缘密度函数;(3)概率 [tex=5.5x1.357]pcLS3GdwGHaNP3Uhki575Q==[/tex]
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,其中 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布律为[img=217x62]17761598d7e8371.png[/img]而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的密度函数为 [tex=2.071x1.357]Wf/eNf1z3Bb6TyEy/WRL1A==[/tex] 求随机变量 [tex=3.714x1.143]wQlTAdtDs1fa21EP7mnykg==[/tex] 的密度函数 [tex=2.5x1.357]ZwbZmG2MqD52Q0FFqDvccA==[/tex]
- 设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合密度函数为[tex=12.929x3.643]s59y2K1bDNChzmHwfrn1oZMscZzqsMzxrepmwWk2KcUQpqKd8yMS9MfWFtdr1CS+4zfy5v+85aA3CBgWf5+U9g==[/tex](1)求常数 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex];(2)试判断 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否独立?
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.