函数[tex=4.0x1.214]ipCIJv/uTl60f/g9fV7M0w==[/tex]在区间[tex=3.5x1.357]14IB9GRNB+MqpAhXjIBkng==[/tex]内是否有界? 又,当 [tex=3.929x1.071]b7h7dbTs6uxtfGSGy3K7maCSj5sCDghQ3/eOAH/zGiI=[/tex]时,这个函数是不是无穷大?
举一反三
- 作出函数 [tex=4.0x1.214]ipCIJv/uTl60f/g9fV7M0w==[/tex] 的图像.
- 证明 : 函数 [tex=6.0x2.357]/rfaeC7rixaiOc8a8ohq6lwpPptyRUdY6yLnmHxb9QaHRovh+G40Qivuk0hBkYDv[/tex] 在区间 (0,1] 内无界,但当[tex=3.214x1.143]Fi2OiSq+zhaJTNdXB7v8ZmiuqjkJSx3JIreVCnloDiA=[/tex] 时这个函数不是无穷大.
- 设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 证明:函数[tex=5.5x1.357]u1+vlPh9RRX6NpBIpAwsFw==[/tex]在[tex=4.643x1.357]WafKDm5071vVz9IYJgBhj8LbdrnQF2M50OcMtr5E7Yg=[/tex]内无界,但当[tex=3.929x1.071]0iekhSMVA/dL4T8UVwZVTYNTiA6LfrJC/IhGs5Ux5DQ=[/tex]时[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]不是无穷大量.