设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]为正整数,证明:若[tex=0.571x1.286]QPadlhZ3vYN/Hi29gpTrFw==[/tex]不是完全平方数,则[tex=1.429x1.429]P01q+HxNLSMgsFoiWe1Xbg==[/tex]为无理数。[br][/br]
举一反三
- 8.设[tex=0.643x1.0]tuApZYgUtaac6gdYe6k0Sg==[/tex]为正整数,证明:若[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]不是完全平方数,则[tex=1.571x1.357]BzSl/ODbAjTVouREV5iT8Q==[/tex]是无理数。
- 设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]是正的素数,证明[tex=1.429x1.429]HYNAWZ/BC45wqayq4GRWUQ==[/tex]是无理数.
- 在命题逻辑自然推理系统 [tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex]中构造下面推理的证明.[br][/br][tex=1.429x1.429]4tia4Fmh8qvcSxImPIjBeg==[/tex]是有理数或无理数.若 [tex=1.429x1.429]4tia4Fmh8qvcSxImPIjBeg==[/tex] 是有理数,则 2 能整除 3 . 若 [tex=1.429x1.429]4tia4Fmh8qvcSxImPIjBeg==[/tex]是无理数,则[tex=1.429x1.429]/9IoObNMjyYNGHUA+4tngQ==[/tex] 也是无理数.而 2 不 能整除 3.所以,[tex=1.429x1.429]4tia4Fmh8qvcSxImPIjBeg==[/tex]和 [tex=1.429x1.429]/9IoObNMjyYNGHUA+4tngQ==[/tex]都是无理数.
- 将下面论述符号化,并求所得复合命题的真值.[br][/br] 若 [tex=0.571x0.786]l57IXZOdm4C+U7oqJ3rVIQ==[/tex] 是无理数,则自然对数的底[tex=0.5x0.786]X0W0/ANSf45taW8iXDx3lw==[/tex] 也是无里数.只有 3 是偶数. 4 才是素数. [tex=1.429x1.429]4tia4Fmh8qvcSxImPIjBeg==[/tex] 是无理数,仅当 [tex=1.429x1.429]cHqUU7bA2VbR0Azx4mfgRA==[/tex] 不是无理数. [tex=1.429x1.429]cHqUU7bA2VbR0Azx4mfgRA==[/tex] 是无理数.
- 设总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从几何分布,分布律为[tex=10.643x1.286]ypaPxhCdRnWTUGQ2NQ+nouX7g1utISzIl/vJ7+9lHIU=[/tex],[tex=4.786x1.286]rqHEi+D3ZhpR8SQMIJakl0I3UvnOVYytGMfkIIfzioo=[/tex],[tex=4.786x1.286]pq6RoAxBz+3cvyul8zgx8Q==[/tex](1)求[tex=0.571x1.286]QPadlhZ3vYN/Hi29gpTrFw==[/tex]的矩估计;(2)求[tex=0.571x1.286]QPadlhZ3vYN/Hi29gpTrFw==[/tex]的极大似然估计。