设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]是正的素数,证明[tex=1.429x1.429]HYNAWZ/BC45wqayq4GRWUQ==[/tex]是无理数.
举一反三
- 设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]为正整数,证明:若[tex=0.571x1.286]QPadlhZ3vYN/Hi29gpTrFw==[/tex]不是完全平方数,则[tex=1.429x1.429]P01q+HxNLSMgsFoiWe1Xbg==[/tex]为无理数。[br][/br]
- 设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]是素数,证明[tex=6.786x1.5]8xULCs69v20v6Ceiwa6S2gAobyaOn4gKeKl5cfFWjROY3rwWOAydUsAVlyOXG6db[/tex]。
- 证明,阶是 [tex=1.214x1.214]KJLx+EM1joQACiFbmjb7Lg==[/tex] 的群 ([tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] 是素数) 一定包含一个阶是 [tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] 的子群.
- 证明如果[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]是不同的素数,则[tex=10.286x1.5]GMFfhPsDIc8d9F1DZJbCckr2VbBgufBr1CLb0m2R9cNiWb3HOb0x0gXTlEG8PBxd[/tex]。
- 设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]是一个素数, [tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]的方幂阶的群. 试证[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的非正规子群的个数一定是[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]的倍数.