举一反三
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个无零因子环且每个加法子群都是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的右理想,证明[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]或与[tex=1.071x1.286]DZ7X6Hat4w0CSAjsS6ByJA==[/tex]([tex=0.571x1.0]+NxxLnTh2HAHOCSSr6dlEg==[/tex]素数)同构,或与[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex]的一个子环同构。
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为交换环, [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的非零理想, [tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex] 是 [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 的素理想. 证明: [tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的理想.
- 已知 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有理数环,[tex=11.429x2.214]lOok9ubivJfTV/4TXzs54zfWLCC1o65BHAxES3/Lr/Xw02F3HnOUsZVQOAMVrVy2w0vU0O5ACYNdPVxEk+8i+YQMaESm6RU0oaFrHBvDoWw=[/tex] 其中 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]是素数.试证 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的子环.[br][/br]
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是偶数环, [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 是素数, [tex=1.786x1.357]CKV1ALvFVhxcb15e70XQsg==[/tex] 是不是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的极大理想?是不是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的素理想?
- 设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构, 证明: [tex=1.571x1.429]WwcGTNxNgqKGUcObs50zWg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构.
内容
- 0
试明定理[tex=1.571x1.0]NRAZSenLCh2cmqvlDAuLxg==[/tex]注 定理[tex=1.286x1.0]kKCBHQIleWbqLYAAphuK9A==[/tex]如下:设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个环, [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想.(1)若[tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想, 则[tex=8.857x1.571]q5W7VvnThRiSAS3Jbiihlk4nznYZovknm27R+wDzbUgy/KB6cLlcqo+RB7WV6+Pt[/tex](2)若[tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的理想,且 [tex=2.357x1.143]hmtyi/PG7j28PFV8+4H81GFH4NHJ9jPZRtfqR3pyO4Q=[/tex], 则 [tex=8.929x1.357]KPfO9KqaoHTPeQJw4n6XBnR8/jev71ZZLhkMVIqcifOI40+aHe2jmxFdBV/vadrB[/tex]
- 1
证明命题 3. 7.注 命题 3. 7 如下:设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个环,[tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的一个理想.(1)若[tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的一个理想且[tex=2.357x1.143]dFK0pllFt/zWEC+crtFExA==[/tex], 则 [tex=1.5x1.357]DQDKvU4BxJ/UC33T+mY9sw==[/tex] 是[tex=1.714x1.357]ceJTjldMkJXWCHatl5T1Jg==[/tex]的理想;(2)若[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]是[tex=1.714x1.357]sU/Eol/VzF4h4tpIDEJ9Ag==[/tex]的一个理想, 则存在 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想[tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex], 使[tex=2.357x1.143]dFK0pllFt/zWEC+crtFExA==[/tex]且[tex=3.286x1.357]lODhOYSHJTAF/Tk9pX1cLA==[/tex]
- 2
证明下面两个[tex=1.071x1.286]DZ7X6Hat4w0CSAjsS6ByJA==[/tex]([tex=0.571x1.0]+NxxLnTh2HAHOCSSr6dlEg==[/tex]为素数)上的[tex=0.571x1.0]+NxxLnTh2HAHOCSSr6dlEg==[/tex]阶方阵相似:[tex=9.429x7.5]oe11HVlBpgnqVUEEYpbT7ki3jNdUKLIwoxXnSKGD6sGLARaiOAHI8VTKUpeXSMGHX3QTCMJcS29HlGpGzWKf9D5e2ZsVQ1bGhf6WjzPkyEMlMEJgFG4YSL64+fXBsoZKWUqb+YCYjZcJwTH3zg8UEZDjNP4XmCplj1qq1hcU9go=[/tex],[tex=10.357x7.5]vO81UwIE4kycS39/K2XZ0xnjuDPLoHaA2UPLNyq1gVvZMrR9c0bkZeOE2E6mbzkTtUYKQSYTGgzCB39SAGzqJZ2pY1UOsVypJsDL1yQ4AawwbDj3qI5Z71Y6DOPzCVhzvUyP1+if8PJYlMJNghC/YppsjhsGEeI9cRsI2oZjD8A=[/tex]。
- 3
[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]$ 是环.若[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的加群是循环群,则[tex=1.929x1.357]9FIhbzl5/ukvcSDgYTm40Q==[/tex]是交换环; [tex=2.286x1.357]axdHSNMdwcobwVSNlkH7lQ==[/tex]的子环只有 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex];[tex=1.857x1.357]ThrYSsXoU1UBNEIfeDOUdA==[/tex]当 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的元素有无限多个时 ,它的任一理想也有无限多个元 [tex=1.929x1.357]NIek8+t8ermGRBdOwRXFbA==[/tex]当 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的元 素有限时,设 [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 为它的理想 ,则 [tex=4.929x1.357]//w0J9Ke3XWDGMAIDmCBvBiit8p9pBK4npdb/yt9WYg=[/tex] 的加法子群都是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的理想 .
- 4
在一个特征是素数 [tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] 的无零因子的交换环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]中,试证: 当 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 有单位元 1 时, [tex=4.429x1.357]4JrYOSIkMQoe3Y+F4Vi5Fc5yM1n+xB9pVJ12e7Wlm6A=[/tex]