设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是偶数环, [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 是素数, [tex=1.786x1.357]CKV1ALvFVhxcb15e70XQsg==[/tex] 是不是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的极大理想?是不是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的素理想?
举一反三
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为交换环, [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的非零理想, [tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex] 是 [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 的素理想. 证明: [tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的理想.
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元的有限交换环. 证明: [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的每一个素理想都是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的极大理想.
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个交换环. [tex=1.5x1.214]VxtvWlgGBBypyenN8OD8Wg==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的两个理想, 且 [tex=2.643x1.143]jZczHAWaUxFVXussUtQMGYnrAWRbjiAANXBvGlu6xz0=[/tex] 证明: 如果 [tex=1.5x1.357]DQDKvU4BxJ/UC33T+mY9sw==[/tex]是 [tex=1.714x1.357]ceJTjldMkJXWCHatl5T1Jg==[/tex] 的素理想, 则 [tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的素理想.
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为环, [tex=1.786x1.214]6tfK8Xu5VII5Cof0ldCDJw==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的两个理想,则 [tex=2.071x1.143]FGBbsKfBrmsAUpq686lM7Q==[/tex] 也是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的理想, 且[tex=13.071x1.571]XuAP5pRnpiOzK6W1JU+4iGIcUJwy+lBPPYAw+otff+OMazqOwTbIAA1mh7Znww+F[/tex]。
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是有单位元的环, [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的一个真理想, 证明:存在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的极大理想 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex]使 [tex=2.786x1.143]/AskU05rJFzE+CohvFDboA==[/tex].