评估分类算法的要素的是( )。
A: 避免欠拟合
B: 避免过拟合
C: 简洁性
D: 准确度
A: 避免欠拟合
B: 避免过拟合
C: 简洁性
D: 准确度
B,C,D
举一反三
- 训练分类机器学习模型时需要避免过拟合和欠拟合的问题,关于这些问题以下说法错误的是() A: 复杂的模型时容易发生欠拟合问题 B: 神经网络不会出现过拟合问题 C: 正则化方法可以减少过拟合问题 D: 增加数据量不能减少过拟合问题
- 决策树剪枝的主要目的是对抗( )。 A: 欠拟合 B: 不拟合 C: 算法复杂度 D: 过拟合
- 过拟合是可以避免的。( )
- 以下关于过拟合和欠拟合说法正确的是 A: 过拟合一般表现为偏差较大 B: 欠拟合一般表现为方差较大 C: 过拟合可以通过减少变量来缓解 D: 欠拟合可以通过正则化来解决
- 如果一个模型在测试集上偏差很大,方差很小,则说明该模型() A: 过拟合 B: 可能过拟合可能欠拟合 C: 刚好拟合 D: 欠拟合
内容
- 0
关于过拟合和欠拟合的说法,错误的是() A: 过拟合是指模型可以很好的拟合训练样本,但是对训练样本的预测能力差。 B: 欠拟合是指模型不能很好的拟合训练样本,且对新数据的预测准确性也不好。 C: 可以用Precision、Recall、F1 、判断模型过/欠拟合。 D: 模型的过拟合和欠拟合是无法通过调整参数来改变的。
- 1
以下操作不属于避免网络过拟合的是()。
- 2
以下能够避免过拟合的方法有?
- 3
建立回归模型的过程中出现的拟合不佳的情况主要有。 A: 欠拟合 B: 过拟合 C: 强拟合 D: 弱拟合
- 4
模型对训练数据拟合好,测试数据拟合差的现象,叫做 A: 欠拟合 B: 过拟合 C: 测试拟合 D: 训练拟合