已知A与B都为m行n列矩阵,如果A与B行等价,则存在m阶可逆矩阵P,使得AP=B
举一反三
- 题目18. 两个\(n\)阶矩阵\(A\)与\(B\)合同指的是: A: 存在\(n\)阶可逆矩阵\(P\)与\(Q\),使得\(PAQ=B\) B: 存在\(n\)阶可逆矩阵\(P\),使得\(P^{-1}AP=B\) C: 存在\(n\)阶可逆矩阵\(P\),使得\(P^TAP=B\) D: 存在\(n\)阶矩阵\(P\),使得\(P^TAP=B\)
- 【单选题】设 A , B 为 n 阶矩阵,若(),则 A 与 B 合同 . A. 存在 n 阶可逆矩阵 P , Q ,使得 PAQ = B B. 存在 n 阶可逆矩阵 P ,使得 C. 存在 n 阶正交矩阵 P ,使得 . D. 存在 n 阶方阵 C , T ,使得 CAT = B.
- 矩阵A是m行n列的矩阵,B是n行p列的矩阵,C是p行m列矩阵,则下列可以计算的是()。 未知类型:{'options': ['', '', '', ''], 'type': 102}
- 给定m行n列矩阵A, n行m列矩阵B,且C=AB. 若n<m,则R(C) <m.
- 设A是n阶方针,A经过若干次初等列变换变为B,则()。 A: B: 存在可逆矩阵P,使得PA=B C: 存在可逆矩阵P,使得PB=A D: 存在可逆矩阵P,使得BP=A