举一反三
- 设平面图形 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]由抛物线 [tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex] 和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴围成,试求[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转所得旋转体的体积
- 求抛物线 [tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex] 与它的通过坐标原点的切线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成的图形绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴旋转所得的旋转体的表面积. 解 设切线为 $y=k x$, 它与抛物线的交点 $(x, y)$ 满足$$y=\sqrt{x-1}, y=k x, \frac{1}{2 \sqrt{x-1}}=k$$
- 区域由曲线[tex=6.214x1.357]RKt9CzdSQyE4OjweWXJOaLdBCddLqAjvrwwIoaXdGtE=[/tex],直线 [tex=4.0x1.214]fTgroTGgk7GoVcGlL+0PsA==[/tex]和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成. 求下列旋转体的体积 公式:(1) 绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴 ; (2) 绕 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴 ;(3)绕水平直线[tex=1.857x1.214]2q61NhXyDarSGYriVZMCyg==[/tex], 其中[tex=6.571x1.714]xmbeAqqtZRuKLAq90Tsc++Y5QV4mlm1ABvJ6YKs4y72SOu8tlNHlnD2ILX+v/un+[/tex]
- 求下列平面图形分别绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴、[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 轴旋转所产生的旋转体的体积. 曲线 [tex=2.786x1.429]GAL3wqj4JSMLlcvcfbE2gA==[/tex] 与直线 [tex=3.929x1.214]lpJ8hQocnvReENEAHudR1Q==[/tex] 所围成的图形.
- 求曲线[tex=2.786x1.357]Efksyl2nsVFjZIt05jVcHg==[/tex]与直线[tex=4.0x1.214]An54X9kuw9HgGkjH0a2Czw==[/tex]和[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成的平面图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴和[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴旋转而得的旋转体体积;
内容
- 0
设平面图形[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 由抛物线[tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex]和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴围成,试求[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 的面积
- 1
求摆线[tex=12.857x3.357]7EJHVCtO2IWq3KpdB+jQshKQOxbCXQe3UJWRVZc7cnvwK8nMSk9c9zDaBObJC4hXx4Tho1J3Ak2mqnIXAPkuoyLJjs4ngjCzMdeoyRhhqgX3OFu+dKllSpUExqFXosJRgngc8w1P6FccqmcN5paMDQ==[/tex],与[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴所围成的图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转而成的旋转体体积。
- 2
过原点作曲线 [tex=3.071x1.214]MBM6FkRKhubflZJqDSdnSQ==[/tex] 的切线, 求由切线, 曲线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围平面图形, 分别绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴和 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴 旋转所得旋转体的体积.
- 3
求下列平面图形分别绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴、[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 轴旋转所产生的旋转体的体积. 曲线 [tex=3.286x1.357]Efksyl2nsVFjZIt05jVcHg==[/tex] 与直线 [tex=6.071x1.214]k2h/9NoqgjWTQThx6Ax/BA==[/tex] 所围成的图形.
- 4
求由抛物线 [tex=4.143x1.429]dTkdVqHpd014mTz65ErxtQ==[/tex]与[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴围成的图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转所得到的旋转体体积.