设平面图形 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]由抛物线 [tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex] 和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴围成,试求[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转所得旋转体的体积
举一反三
- 设平面图形[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 由抛物线[tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex]和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴围成,试求[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 的面积
- 设平面图形 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 由抛物线 [tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex]和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴围成,试求抛物线 [tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex]在[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴上方的曲线段的弧长
- 设[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]是曲线[tex=2.857x1.571]orm4v5pmotlzVdFInwDSoQFYkN1XI7NL2pVeNMGzUQY=[/tex],直线[tex=5.071x1.357]kxges0j/mnN49PxV5Zem0A==[/tex]及[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴所围成的平面图形,[tex=1.0x1.214]yaJ04YkYPNLWmsCICRQjvw==[/tex],[tex=0.929x1.286]Cy7+3pcXJKdUsysbxfmIBg==[/tex]分别是[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴、[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]轴旋转一周所得旋转体体积,若[tex=4.286x1.286]5NOTLnrhJhmv5Qp4zuEPP0bYlTeqabz5O5Vc5w1IQ9s=[/tex],求[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的值。
- 求由抛物线 [tex=4.143x1.429]dTkdVqHpd014mTz65ErxtQ==[/tex]与[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴围成的图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转所得到的旋转体体积.
- 求抛物线 [tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex] 与它的通过坐标原点的切线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成的图形绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴旋转所得的旋转体的表面积. 解 设切线为 $y=k x$, 它与抛物线的交点 $(x, y)$ 满足$$y=\sqrt{x-1}, y=k x, \frac{1}{2 \sqrt{x-1}}=k$$