计算下列矩阵的 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 次幂, 其中 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 为正整数:[tex=8.286x3.5]QN0fTQbn6M33pU3gx/S2ssRzVqpWUEMlPB1F8em9pxPHPIIzaitaqaXj3OkAP2YhwLgtNTq7mVpRVmzCUDjgMxeK0fRBchQXdLQiPBE6zvU4+B34aF8ZRVS24QkM3V+Y[/tex]
举一反三
- 计算下列矩阵的 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 次幂, 其中 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 为正整数:[tex=7.929x4.786]SG13E7iu2HdaLVWfWJMdasNcssnOsnpcSXP9pfv8ZVudX8uBxPyIW+BW1iuKqBWPQy19xF0hvC5K+ZJXm49WVAb1VZdwsjQNiE6Ohf5lij4=[/tex]
- 当 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 为 ( ) 时, 矩阵 [tex=8.429x3.929]QN0fTQbn6M33pU3gx/S2srrO+uPYR1FjXG+OULT3PZ0SZZv0cSQupnZyQHcg8Bq3hHsRRoJ35sZ/ccGFpHG0e8Wn0r2X4CmeHP5XlhmRWGEElGmh4cHBsTAfC35uP2P5[/tex] 为正定阵. 未知类型:{'options': ['[tex=2.357x1.071]iILyBi8jdCgmaZqoi7cqWw==[/tex]', '[tex=2.786x1.286]Ngz0glv+VFVna1g4OsuYaQ==[/tex]', '[tex=2.357x1.071]upVaYJbqmrJHFYrKAoUxOw==[/tex]', '[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 不存在'], 'type': 102}
- 证明一个 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 一循环置换的阶是 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex].
- 设矩阵[tex=6.214x2.786]3BT1BgBZQ5uJXxD5dg+w23rrcqKx27L2L0paZLVx73WXeIIWWUv0DsXtkZVz+pR/niymUxW6MuO9YSZQQGhJXg==[/tex],求[tex=1.214x1.214]954uF65LINdiWcjcrFsUZg==[/tex]([tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]为正整数)。
- 设 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 为正整数,证明:[tex=7.286x2.714]WdYFOXfG5nnGW/WgiEfXS7KSJGNH9TOu8OctQH+TBUAmN+2wRfhYp9VdsOm9mviu[/tex].