如下神经网络结构[img=392x218]17e0ac2e9347b5e.png[/img]下列代码和哪个表示式一致[img=638x261]17e0ac2ea5f54b6.png[/img]
A: z = Theta1 * x; a2 = sigmoid (z);
B: a2 = sigmoid (x * Theta1);
C: a2 = sigmoid (Theta2 * x);
D: z = sigmoid(x); a2 = sigmoid (Theta1 * z);
A: z = Theta1 * x; a2 = sigmoid (z);
B: a2 = sigmoid (x * Theta1);
C: a2 = sigmoid (Theta2 * x);
D: z = sigmoid(x); a2 = sigmoid (Theta1 * z);
举一反三
- 随机矢量空间中,待估计量\(\theta \)在观测量\(z\)上的投影可以记为: A: (A)\(\frac{{E(\theta z)}}{{E({\theta ^2})}}z\) B: (B)\(\frac{{E(\theta z)}}{{E({\theta ^2})}}\theta \) C: (C)\(\frac{{E(\theta z)}}{{E(z_{}^2)}}z\) D: (D)\(\frac{{E(\theta z)}}{{E(z_{}^2)}}\theta \)
- 如果sigmoid(x)中的x=0,则sigmoid(0)的值是()。 A: 0 B: 1 C: 2 D: 0.5
- 已知向量a=(x,2,-10),b=(3,1,z)平行,则坐标x,z分别为( ). A: x=2,z=1 B: x=1,z=2 C: x=6,z=-5 D: x=-6,z=5
- 已知序列[img=256x24]1803c8ed65826a9.png[/img] A: X(z)=2/(Z*n0) 0|Z|1 B: X(z)=3/(Z*n0) 0|Z|10 C: X(z)=1/(Z*n0) 0|Z|[img=18x14]1803c8ed6ec7788.png[/img] D: X(z)=Z*n0 0|Z|[img=18x14]1803c8ed6ec7788.png[/img]
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$