设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶非奇异矩阵且有分解式[tex=3.214x1.214]BjwteLTOaSVy105jcPGrHg==[/tex]其中[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]为单位下三角阵, [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex]为上三角阵,求证 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的所有顺序主子式均不为零.
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶复矩阵, 求证: 存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶酉矩阵 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex], 使 [tex=3.214x1.214]W7KMZ9eTc4N4OEAP/sk56g==[/tex] 是上三角矩阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证:(1) 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可逆, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl/jgx7HDqG8OMKcZZrhVcXy6+JovSSXitpjCbh6SDQEN[/tex](2) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为半正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶半正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl8wUbDZMgCOnJA1lQifZKR+Dh2C+JkyFhRzqn66dyW91[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正定阵的充要条件是存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶非异实矩阵 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex], 使 [tex=3.286x1.143]Ys46PWl0/Kt6EeuPQmIYUVrqckiP2yTAu4+gPWxyAI8=[/tex];
- 试推导矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的[tex=2.643x1.0]fMLfuVHw2Znp3WD2R+LHOw==[/tex] 分解的计算公式[tex=3.5x1.0]cDW+JlMHFq3Vag+Jwcqorw==[/tex],其中[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]为下三角矩阵, [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex]为单位上三角矩阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 若存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 使 [tex=4.143x1.286]YCUl/vNcR5SNlwwslg9Jhb5CY//bqvCw+mSVvBQx12Q=[/tex] 是正定阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为非异阵.