设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实方阵, 已知 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值全是实数且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的一阶主子式 之和与二阶主子式之和都等于零. 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是幂零矩阵.
举一反三
- 设 4 阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足条件[tex=13.429x1.571]pNXwj7dxoGbcprO3/HATinbMcrt8sC5y1uPd3TRH6ssCiv8WtIXVXb9cSHXuJP20[/tex], 其中[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]为 4 阶单位矩阵,求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有一个特征值。
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是一个反对称矩阵, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有一个 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 阶主子式 [tex=1.571x1.357]Q/GokBo2RLLYLkjQdcJvqg==[/tex] 不等于零且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 所有包含 [tex=1.571x1.357]Q/GokBo2RLLYLkjQdcJvqg==[/tex] 的 [tex=1.786x1.143]UaQxuhUKI4GVtPgR92aBsw==[/tex] 阶加边主子式都等于零, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的秩等于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定实对称阵, 求证:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的所有主子式全大于零, 特别, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的主对角线上的元素全大于零
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶幂零方阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶可逆方阵,且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 可换,则 [tex=5.071x1.214]RN2thfSI1MmKxRcibVWDuJHiSryPX2cHjTCV9twFdmY=[/tex] 都是可逆矩阵.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵,试证[tex=3.929x1.357]zOZuuMWAZIsiXYVOBElBnx30ORNcj0KMg0pj5MM28Rs=[/tex]零是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的一个特征值.