设[tex=2.357x1.286]t1pHPvJ7AlZl1FT6fv2UoA==[/tex],计算旋转抛物面[tex=5.429x1.286]1dhPauTZum+c31XeDU5dGyDrNUaLgMsMdTpEGOldP7w=[/tex],圆柱面[tex=6.0x1.286]9bZQpSYifgquBYPcQEiZp7qrLQoAvphlK0Cd+MZ/5MA=[/tex]与平面[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex]所围成的立体[tex=0.714x1.286]1YkIdjxXLHdjdjLEO+eusQ==[/tex]的体积 .
举一反三
- 画出旋转抛物面[tex=4.929x1.286]4S08oViEap2mcmnzdJxBs2dRuZpwGIilf376wcz90AM=[/tex],柱面[tex=2.857x1.286]SX6Mf6VLzor8G12z5cl4Ag==[/tex],平面[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex]及 [tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex]所围立体的图形。
- 选用适当的坐标计算三重积分:[tex=5.214x2.643]d3ujl3GeJ3mOoZtqHAS0S29ft6HJQyTe1CvPKCUEUsE=[/tex],其中[tex=0.714x1.286]1YkIdjxXLHdjdjLEO+eusQ==[/tex]为柱面[tex=4.929x1.286]gaOTVVjf/dAZcYqazZJUpGhWmJBaN4V+TuDtcAK2IqE=[/tex]及平面[tex=2.286x1.286]NGblVJ4MOxCzYWTiKwrJpw==[/tex],[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex],[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围成的在第一 卦限内的闭区域。
- 计算由四个平面[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.286x1.286]00XlJXnsFPYY5douG8n+zA==[/tex]所围成的柱体被平面[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex]及[tex=6.714x1.286]/IM4BpXrl6LFoB+hKPdGUg==[/tex]截得的立体的体积。
- 求由平面 [tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex], [tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex], [tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex] 及 [tex=4.0x1.286]Y2PAOcQLlnse9p/I1rNCIQ==[/tex] 与椭圆抛物面 [tex=3.0x1.286]yFFuWBktvEIXQBePtMKHkQ==[/tex][tex=3.143x1.286]1MrHNO42U0UB36xVB0mfqlSGMDXCIKuU0KvWlcvpOP4=[/tex] 围成的立体的体积.
- 求由平面[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.286x1.286]00XlJXnsFPYY5douG8n+zA==[/tex]所围成的柱体被平面[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex]及[tex=6.714x1.286]TfPpOwYOQvsB0dHYys9ij7o66UaDh1gVDxnfvLOO9dM=[/tex]截得的立体体积 .