方程$(x^2+1)(y^2-1) + xy y' = 0$的通解为
A: $y^2 = C \frac{e^{-x^2}}{x^2}$
B: $y = C \frac{e^{-x^2}}{x^2}$
C: $y^2 = C \frac{e^{-x^2}}{x^2}+1$
D: $y=C \frac{e^{-x^2}}{x^2}+1$
A: $y^2 = C \frac{e^{-x^2}}{x^2}$
B: $y = C \frac{e^{-x^2}}{x^2}$
C: $y^2 = C \frac{e^{-x^2}}{x^2}+1$
D: $y=C \frac{e^{-x^2}}{x^2}+1$
举一反三
- 方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- 求方程$y\frac{{{d}^{2}}y}{d{{x}^{2}}}-(\frac{dy}{dx})^{2}=0$的通解: A: $y={{C}_{1}}{{e}^{-{{C}_{2}}x}}$ B: $y={{C}_{1}}{{e}^{-{{C}_{2}}{{x}^{2}}}}$ C: $y={{C}_{1}}x{{e}^{-{{C}_{2}}{{x}^{2}}}}$ D: $y={{C}_{1}}{{e}^{{{C}_{2}}x}}$
- 函数$f(x,y)={{\text{e}}^{-x}}\cos y$在点$(0,0)$处2次Taylor多项式为 A: $1+x+\frac{1}{2}({{x}^{2}}-{{y}^{2}})$ B: $1-x+\frac{1}{2}({{x}^{2}}-{{y}^{2}})$ C: $1-x+\frac{1}{2}({{x}^{2}}+{{y}^{2}})$ D: $1+x+\frac{1}{2}({{x}^{2}}+{{y}^{2}})$
- 微分方程$y' = \sqrt{x},y(1)=0$的解为 A: $ \frac{2}{3} x^{\frac{3}{2}} + C $ B: $ \frac{2}{3} x^{\frac{3}{2}} -\frac{2}{3} $ C: $ x^{\frac{3}{2}}-1 $ D: $ x^{\frac{3}{2}}+C $