在logistic分类中,L1正则化和L2正则化的引入为了解决什么问题?
A: 数据量不充分
B: 训练数据不匹配
C: 训练过拟合
D: 训练速度太慢
A: 数据量不充分
B: 训练数据不匹配
C: 训练过拟合
D: 训练速度太慢
举一反三
- 下列哪种方法可以减小“过拟合”? A: 减少训练数据 B: L1正则化 C: L2正则化 D: 减小模型复杂度
- 下列哪些方法可以用来减小过拟合?() A: 更多的训练数据 B: L1正则化 C: L2正则化 D: 减小模型的复杂度
- 关于L1正则化和L2正则化说法错误的是 ( )。 A: L1正则化的功能是使权重稀疏 B: L2正则化的功能是防止过拟合 C: L1正则化比L2正则化使用更广泛 D: L1正则化无法有效减低数据存储量
- 下列关于L1正则化与L2正则化描述正确的是(__)。 A: L1范数正则化有助于降低过拟合风险 B: L2范数正则化有助于降低过拟合风险 C: L1范数正则化比L2范数正则化更有易于获得稀疏解 D: L2范数正则化比L1范数正则化更有易于获得稀疏解
- 解决过拟合问题的方法有: A: 增大训练集 B: 采用正则化 C: 增加网络参数 D: 减小正则化参数